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summary 
Based on an idea of Ajdukiewiu, a method of equifunctionality is developed to provide a 

formal explication of the notion of sameness of use relative to some system of rules. Given this, 
a set-theoretic explication of Lauener’s context dependent conception of synonymy is intro- 
duced by looking at languages of propositional logic, and compared both with Ajdukiewicz’s 
original conception and with Carnap’s explication of synonymy based on his method of exten- 
sion and intenrion 

1. Introduction 

1.1. Henri Lauener’s Transcendental Theory of Language 

The work presented here is part of a larger project I have been engaged in 
together with Henri Lauener with the aim of formalising his transcendental 
theory of language. Lauener’s views on language, 1 determined by his general 
philosophical position, i.e. his “open transcendentalism”, are rooted in the 
conviction that semantic and epistemological notions - such as truth, mean- 
ing, synonymy, antinomy, analyticity, objectivity and reality - must be thor- 
oughly relativid to what he calls ”contexts”.2 These contexts, or ”L-con- 
texts“ (as I shall call them to avoid confusion with other technical uses of the 

I wish to thank first and foremost Henri Lauener, not only for having asked me to colla- 
borate with him, but also for the many stimulating and congenial hours we spent discussing in 
the Restaumnt du Raisin in Vevey. My thanks also go to Karel Lambert and Hugh Miller for 
their helpful comments and to the qchwizerischer Nationalfonds for having funded the re- 
search for this paper. 
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1 See Lauener [ 1982J - 19921. 
2 Lauener is in part~c ul ar opposed to the “global holist” conception which Views lan- 

guage as a single universal communicative medium where everything is dependent on every- 
thing else. 
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term), are language systems which Lauener conceives of as theoriebedingte 
Handlungszusammenhange, given in terms of a system of rules governing the 
use of expressions, and used as instruments for different purposes (such as 
that of formulating a particular scientific theory). He sees linguistic express- 
ions (i.e. words, phrases, sentences) as instruments, or tools, used according 
to the system of rules of the L-context adopted for the particular purpose in 
question. The linguistic characteristics of these expressions are only meant to 
be determined, or well-defined, relative to such an L-context. This means, in 
particular, that “meanings”, far from being immutable Platonic objects mys- 
teriously related to linguistic individuals, are characteristics which linguistic 
expressions acquire only when used in accordance with the rules of the L-con- 
text in question. 3 

Given the central role of these L-contexts in Lauener’s theory of language, 
the first task in any formalisation of this theory must be to find an adequate 
formal representation for the involved rule systems. In this essay, I shall focus 
on a certain kind of rules which feature prominently in L-contexts, namely the 
kind of rules which guide the “construction” (or “formation”) of linguistic ex- 
pressions and their interpretations. As we shall see, these formation rules 
allow for a straightforward set-theoretical representation. My aim will be to 
define a formal representation of Lauener’s intuitive context-dependent con- 
ception of synonymy within an set-theoretical framework. To set the scene for 
such a representation, let us return to what is, to my knowledge, the first at- 
tempt at giving a formal account of a relativised conception of synonymy, 
namely 

1.2. Ajdukiewicz ’s Radical Conventionalist Approach4 

In his 1934 paper entitled Sprache und Sinn, Ajdukiewicz gives a detailed 
account of his radical conventionalist theory of language. Most importantly, 
for our purposes, he suggests a formal representation of what he calls meaning 
rules of languages. On the basis of this representation, he introduces a formal 
method for establishing a relation of “isotopy” between expressions (of a 
given language), a relation which he then identifies with that of synonymy. 
Ajdukiewicz’s position on this subject matter is admirably summarised in the 
following passage by Giedymin: 

3 To ask about the meaning of an expression Without specifying an L-context is thus on a 
par to inquiring about the numerical weight of an object Without specifying a measurement sys- 
tem. 

4 See Ajdukiewicz [ 1934a1, [ 1934b], and [ 19351. 
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” [In Ajdukiewicz’s abstract analysis] language is reconstructed in terms of its voca- 
bulary, the rules of syntax and the meaning-specification or meaning- (acceptance) 
rules. The latter determine the structure or matrix of the language and the meaning of 
expressions is then conceived as an abstract property they have in virtue of the positions 
they take in the matrix. Three kinds of meaning-rules may be distinguished as basic: (1) 
axiomatic meaning-rules specify sentences which are to be accepted unconditionally: 
the rejection of any sentence dictated by an axiomatic meaning-rule amounts to the 
violation of the meaning-specification characteristic for the language; (2) deductive 
meaning-rules spec@ ordered pairs of sentences (or ordered pairs whose first element 
is a sentence-class and the second element is a sentence) such that if one accepts the first 
of them one is thereby committed to accepting the second on pain of violating the 
meaning-specification of the language; (3) empirical meaning-rules assign to definite 
experiental data sentences (simple empirical meaning-rules) or to definite experiential 
data and sentences, other sentences (compound empirical meaning-rules) such that in 
the presence of those data (possibly conjoined with the acceptance of some sentences) 
one is forced to accept the co-ordinated sentence if one is to avoid violation of meaning. 
Axiomatic and deductive meaning-rules are discursive, they are sufficient for purely 
discursive languages, e.g. of pure mathematics.” [Giedymin 1978, p. XXXVII] 

1.2.1. Language Matrices 

Ajdukiewicz’s formal representation of a system (say MA) of meaning 
rules as a matrix (MA), is as follows: 

“Each meaning rule has a scope: the scope of an axiomatic meaning-rule is a set of 
sentences (the axioms or principles of the language); the scope of a deductive meaning- 
rule is a set of ordered pairs of sentences (or of sentence-cladsentence); the scope of 
an empirical meaning-rule is a set of ordered pairs of experiential data and sentences or 
experiential data-cumsentences/sentence). The scopes of the meaning-rules of the 
same type may be summed. The sum of the scopes of all meaning-rules of the same type 
is their totalscope.” [Giedymin, 1978, p. XXXVII] 

The total scopes for the rules in MA (i.e., if we wish, the scope of MA) are 
then re-described in matrix form with the additional modification of repre- 
senting the syntactic structure of a sentence, say ‘@ v q) * (1 p + q)’, by 
“encoding” it in a sequence of expressions, in our case 

((P v 4 )  ++ (1 P + q), c*, (P v 6, v, P, q, (1 P + q), +, 1 P t l ,  P, 4). 

The example of a language m a t e  given by Ajdukiewicz [ 1934a, p. 1311 is for 
a language with the following finite set of expressions {a, b, c, 4 e,f, g, h, i, j ,  k}. 
The matrix contains three parts, each of which representing (the scope of) one 
of the three kinds of “meaning rules” accepted by Ajdukiewicz, namely 

Axiomatic Part 
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where a$, and y represent “ Erfahnmgsdaten”, i.e. experiential data. 
On the basis of these matrix representations of meaning-rules, Ajdukie- 

w i n  then gives a formally precise definition of a relation, say =A,  which he 
puts forward as an explication of synonymy: 

“Zwei Ausdriicke einer Sprache nennen wir synonym, wenn sie in der Matrix der 
Sprache isotop sind, d.h. wenn die Matrix bis auf die Ordnung der Zeden unveriindert 
bleibt, falls man in ihr beide Ausdriicke vertauschtl’ [Ajdukiewicz 1934a, p. 1321 

That is, two expressions are called synonymous (by Ajdukiewicz) if they are 
isotopes in the matrix based on the total scopes of the meaning rules. 

1.2.2. Tarski’s Objection 

It is one thing simply to call a formally defined relation “synonymy”, and 
quite another whether the relation so called actually represents the intuitive 
relation of that name. Indeed 

“it was pointed out by Tarski (as reported by Ajdukiewicz in ‘The Problem of Em- 
piricism and the Concept of Meaning’) that, at least for a language L based exclusively 
on axiomatic and deductive meaning rules, one can construct two expressions A and B 
such that the meaning rules of L are invariant under the exchange of A and Band yet A 
and B have norridentical denotations.” [Giedymin 1978, p. XLVII] 

To give an example: in a purely discursive language with i( t = f )  and i(f= t) 
as (sole) axiomatic meaning rules, we will have that t Yet clearly the 
denotations of rand fmust differ in any model of the two axioms. Thus, if we 
adopt the view that synonymy entails identity of denotations, then = A cannot 
be the relation of synonymy. 

Giedymin [1978, p. XLVII] and Ernest [1985, p. 2281 suggest that, in 
order to solve this problem, all we need to do is add the sameness of denota- 
tion as a further criterion to Ajdukiewicz’s definition of synonymy. 5 It might 

5 Thus Ernest, in his analysis of mathematical languages, adopts the view that two ex- 
pressions @, and @* of a language L are synonymous (relative to a set of postulates nand the 
(Fortsetzung siehe niichste Seite) 
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well be - in particular for the mathematical languages considered by Ernest - 
that this added requirement ensures that the relation so defined is co-exten- 
sive with that of synonymy. Yet even if it is, I believe that the way in which this 
is achieved is too ad hoc to reflect the complex interdependencies of semantic 
and syntactic features involved in synonymy. I shall return to his issue briefly 
towards the end of this essay. 

1.3. Equifunctionality 

Tarski’s objection shows that Ajdukiewicz’s isotopy-relation cannot be (a 
formal representation of) synonymy. And yet, in defining this relation, Ajdu- 
kiewicz has given us an insight which, in my view, far outweighs this shortcom- 
ing. He has brought to the fore the notion of isotopy relative to the scope of a 
rule system, and he has given us a general method of how to establish such iso- 
topy relations. In the analysis to follow, I shall apply this method to different 
kinds of rule systems, with the difference that - instead of interpreting the re- 
sulting isotopy relations as meaning relations - I shall generally interpret them 
as relations of having the same use (or function) relative to the rule system in 
question. For the purposes of this introductory essay, I propose to use an 
L-context L,, of a particularly simple type - namely that of propositional 
L-contexts used to talk about propositional logic - in discussing the different 
kinds of (formation) rule systems and in explicating the different kinds of 
“sameness-of-use”, or “equifunctionality” relations given relative to these 
rule systems. The idea being, of course, that for some such rule system, same- 
ness of use will indeed be sameness of meaning (in L,,). To do this, let me in- 
troduce the following definitions. 

(i) A system offonnation rules, as I shall use the term, is a system ‘K of rules 
associated with a unique and well-defined class - Scope( ‘K) - of ob- 
jects referred to as the scope of%. Paradigmatically this scope will be 
the class of all the objects which can be constructed (or fonned) by 
means of ‘K . 

Thus, if ‘K is a system of grammatical rules, Scope( ‘K ) will be the class of all 
the expressions that can be correctly formed according to ‘K ; or, if it is the 
system of rules governing a c e h h  board-game, say chess, then its scope will 
be the class of all the sequences of configurations on the chessboard which 

(Fortsetzung von S. 4) 
class M of Gstructures satisfying n) if, and only if, for all M E M: a1 E A a2 (relative to ”) and 
ext (al, M) = ext (a2, M) - where ext(ai, M) designates the extension/denotation of m M. 
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constitute correctly played games of chess. Crucial in this conception is that 
the scope of such a system reflects its numerical identity6 - i.e. that for any 
formation rule systems % and % 

%= % iff Scope( %) = Scope( %) 

- for this enables us to use the scope of a rule system as its set-theoretic rep- 
resentation. Given this, we can now introduce the following terminology con- 
cerning a system of formation rules % and a collection C of components used 
in %-constructions: 

(ii) A set A 1 Scope(%) is and Ajdukiewicz-field dfor %, relative to C )  if 
for every X E A and every a,b E C an exchange of a and b in Xis well- 
defined and produces a unique result, say XS;, which lies in A. 

( i )  The mapping 11: : A 3 A; X H Xll: induced by any given a, b E C in 
such an Ajdukiewicz-field shall be referred to as the Ajdukiewicz-auto- 
morphism (induced by a and b). 

(iv) % is an Ajdukiewicz-system (relative to C )  if there is an Ajdukiewicz- 
field for % (relative to C). 

Assuming a certain compatibility between the "exchange constructions" as- 
sociated with Ajdukiewicz-fields of such an Ajdukiewicz-system % ,8 we can 
then define the following formal equivalence relation 

( 9  a g b  scope (R 11: = Scope (R 

Even though we might well be able, in certain cases, to judge the numerical sameness or 
difference of a formation rule system % n d  a formation rules system Won the basis of their 
procedural characterisations alone (i.e. without having to compare scopes explicitly th is  only 
reflects the fact that in these cases the relevant scope comparisons can be made impkcitly. The 
numerical individuation of formation rule systems by their scopes is essential to the conception 
of such systems. 

The fact that these mappings are automorphisms, i.e. one-one and onto, follows di- 
rectly from certain intuitive constraints which 41; must satisfy, in order to be product of an 
"exchange constructions", namely that 

= X, 41; - Xll: and (4l;)ll; = X. 
* The assumption here is that an exchange, of a and bin some object Xis determined ex- 

clusively by the structure of X, meaning that it is notrelative to the Ajdukiewicz-fields which X 
happens to be a member of. Or, to put it differently, if A and A' are both Ajdukiewicz-fields 
for %with the Ajdukiewiu-automorphisms AII; and Asll; respectively, then 

All; IAnA'  = A'll;lAnA'* 

It is this assumption which allows us to omit a reference to the relevant Ajdukiewiu-field in the 
notation for the Ajukiewicz-automomorphisms, i.e. to use 11; instead of the more cumber- 
mme All.,. 
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which is independent of the choice of Ajdukiewicz-field, and which I shall 
refer to as the equifunctionality relation of R .9  

It is this relation which I shall use as representation of the informal relation 
of having the same use or function as specified by the rule system R . The jus- 
tification for this is based on the fact certain construction rule systems allow 
for a special kind of procedural definition which enables us to give an informal 
characterisation of what “sameness of use” (relative to such a system) 
amounts to. What I have in mind are systems in which each of the basic com- 
ponents in question is referred to in precisely one of the rules. Take, for 
example, the system S o  for constructing number-sequences by means of the 
numerals 1,2, and 3, given by 

S, : (n )  E Scope (Sa) iff n = 1; 
S, : if s,d E Scope (Sa) then sn(2)nd E Scope(Sw); 
S, : if s,d E Scope (Sa) then s*(3)”d E Scope (Sa). 

The ”uses” of the basic components 1,2, and 3 relative to So are fixed by the 
procedural instructions given in S,, S, and S, respectively, and nothing else. 
Thus if, by an exchange of reference to the basic components in question, two 
such rules are mutually translated into one-another - as is the case for S, and 
S, - then these basic components must have the same use relative to the sys- 
tem in question. Given that, in this case, the system specified by the ”trans- 
lated” rules is numerically the same (i.e. has the same scope) as So, it is easy to 
see, from the way in which our equifunctionality relations were defined, why 
they can be used to represent the relevant sameness of use (an analogous ar- 
gument can be given for difference of use). As for other rule systems, where 
we do not have the same sort of intuitive grasp of the sameness of use, the 
equifunctionality relations are assumed to have the desired representational 
character as a matter of convention. 

2. Syntactic Formation Rules 

Let us then begin to discuss specifically the formation rule systems in- 
volved in propositional L-contexts. Amongst these rule systems there is one - 
namely the system 5; of syntactic (“grammaticaZ”) formation rules - which 
provides a natural starting point for our investigation. To simplify matters fur- 

In the terms given in these definitions, Ajdukiewicz’s isotopy-relation can now be char- 
a c t e d  as x IJ iff Scope (MA)II ;= Scope (MA) (for x, y~ { a, . . ., IC)) - wih Scope (MA) 
being the set of the three part of MA, themselves treated as sets (which simply takes into account 
Ajdukiewicz’s use of isotopy instead of identity). 
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ther, let me focus my analysis on the classical propositional L-context L, 
based on the set B := { 1, A ,  v , -. , p l ,  p2,  p3, . . . } as basic linguistic expres- 
sions. 10 

2.1. The Tree-Structure Interpretation of 5; 
The “procedural” characterisation of 5; - that is the description of 5 as a col- 
lection of des ,  as opposed to its set-theoretical characterisation in terms of its 
scope - which I shall adopt, is given in the following recursive formation rules 
for certain tree-structures, which I shall refer to as (syntactically) well-formed 
formulae (m): 11 

i) A one-node tree-structure ( x )  is a wff iff x E Vur; 
1 

A V 4 

iii) IfQ,andY arewffs,thensoare /’\ /\ a n d /  \ 
Q, Y Q ,  Y Q ,  Y 

- where Vm- { pl, pz ,  p3,. . . }is the set of “propositional variables”. From the 
way in which these rules are stated, we can - like in the case of So - intuitively 
gauge the sort of functions assumed by vocabulary expressions in virtue of 9, 
namely the functions of being a variable, a monadic logical connective and a 
dyadic logical connective. That is to say, the informal “sameness of use struc- 
ture” imposed on B by 5; is given by 

r = { { l } , { A ,  V?}, v-1 
- where { 1 } is the set of monadic logical connectives, and { A,  v , --+ } that of 
the dyadic ones. 

lo More traditionally B is referred to as the “vocabulary” of this L-context. 
The choice of interpreting 5; as a system for the construction of tree-structures (out of 

the basic linguistic expressions of L given in B) is by no means the only possible one. Thus one 
might interpret 5; as a system for the construaon of sequences of vocabulary elements which 
could be called the “purely sequential interpretation”), but this intaretation would, at I east if 
based on the traditional notation, have to be rejected because of its inability to represent certain 
intuitive grammatical distinctions: no distinction could, for example, be made between 
‘@I A p) V fi’ and ‘p A (p V pJ. Of course there are notational systems where the additional 
structure is encoded sequentially (see, for example, the notation used in Bell and Machover 
[ 1977]), but that does not mean that it is not inherent in the constructed objects, but merely that 
we have additional rules to make it explicit. The advantage of interpreting3 as a system of rules 
for constructing tree-structures is that these tree-structures incowrate precisely the sort of 
”sameness” Camap refers to on pp. 57 f. in his [ 19561. 
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The class F, of all finitely branched, finite trees based on B is an Ajdukie- 
wicz-field for 5 relative to B. 

To show this we need to establish a more precise conception of an exchange of 
basic Lo-expressions in the tree-structures of F,. My suggestion is to explicate 
this in terms of the formal notion of substitution. Take, for example, the wff 
s = ‘(pl v pz )  v p3’. It is intuitively clear that the transformation of s described 
as “the exchange of ‘ p l y  and ‘p2’ in f has 

sllE = ‘(pz v p l )  v p3’ 

as its unique product, and that this product is again an element of F,. The 
question is whether this transformation can be described in terms of substitu- 
tions. At fist sight, one might consider an explication of Q, 11: (for some a,b 
E B and Q, E F,) as Q, I:,! -where XI: designates the product of substituting a 
for b in X, and XI 2,; is short for (XI “b>l!. The fact, however, that 

and 

shows that this explication cannot be correct: not only because neither of the 
substitutions results in the intuitive exchange product, i.e. ‘(pz v p l )  v p3’, but 
also because of the fact that since s I # s I ”p,’,: , the suggested explication 
allows for an a-symmetry not admissible for exchange operations. 12 The sim- 
plest way of overcoming this obstacle is by employing “place holders” - by 
which I mean characters (say 5 and r) which are not part of the vocabulary - 
in intermediary substitutions, i.e. to characterise Q, II : as (Q, 12; ) I k:. It is easy 
to see that this substitutional characterisation avoids the shortcomings of the 
initial description, 13 and that 

defines an automorphism on F, for any a, b E B. The “syntactic” equifunction- 
ality relation e (on B) is then given by 

’* The product of exchanging a and b in @ cannot be different from the product of ex- 

l3 Not only do we have that (@l~‘)l‘;,~ = (@It: )I:! , but also, as desired, that 

changing bandain@,i.e. @lI~mustbethesameas@11.6. 

c ( ~  v m) v nv4:e)~ :& = Y~ v m )  v p g  
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and we find that the -e 2 q uivalence classes coincide with our informal classifi- 
cation of the basic &-expressions, i.e. that 

B >=B’ .  

The syntactic equifunctionality relation 5; thus groups together precisely those 
vocabulary expressions which we informally said to have the same function 
relative to the adopted grammatical rule system. Our “equijunctionality 
method” has thus yielded a set-theoretical characterisation of the relation 
(between vocabulary expressions) of having the same function relative to 5;. 
But what about (complex) well-formed formulae? Is it possible to give the 
same sort of set-theoretical characterisation of the sameness-of-!+function as 
far as they are concerned? 

I f  

2.2. The.5-Equijunctionality of Well-Formed Formulae 

The problem with extending 5; to well-formed formulae is the following: 
since well-formed formulae can be proper parts of one another, it is no longer 
self-evident how their exchange in a given construct is to be executed. Take 
again s = ‘(pl v pz )  v p3’, this time as an example of a 5;-construct within 
which an exchange of two constituent wffs is to be executed. There is no prob- 
lem if the two wffs are disjoint - like CP = ‘pl v pz’ and <P’ = ‘p3’: in this case 
the exchange is well-defined and its product is sllz = ‘p3 v (pl v p#. But what 
are we to understand by an exchange of say = ‘pl v pz’ and W = ‘pl’ in s? 
The problematic nature of this becomes clear if we try to apply our substitu- 
tional characterisation of such exchanges, for we find that 

a result which - assuming that the employed substitutional explication is cor- 
rect - shows that the notion of an exchange is ill-defined in the present 
example. l4 To overcome this obstacle, I propose to use a “translation” of the 
rule system in question (i.e. in the present case, a “translation” of 5;) in which 
the complex expressions to be exchanged (i.e. @ and W) are “translated” into 
atomic vocabulary expressions. More precisely, for any given “exchange ex- 
pressions” Y,Y € Scope(.9), an a d a r y  rule system, say .$%, is introduced 
as a sub-set of the class FFof all finitely branched, finite trees based on Sc = 

{EL 1 by defining 

l4 The idea being that if an exchange of x and y in Xis well-defined then 
Xll: - (Xl;,~l:,: - (xllk;)I:;. 
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The5-functions of Y and Y’ are then “mirrored” in the 5;Whnctions of f and 
I;, respectively. Given that Scope(F) is nothing but the class of well-formed 
formulae of the propositional language, say q c ,  one obtains by adding E, and I; 
as new propositional variables to our vocabulary B, and that FgS is an Ajdu- 
kiewicz-field relative to this enriched vocabulary Btc, we are thus able to com- 
pare the 5-functions of Y and Y’ by looking at whether their “proxies” (i.e. f 
and <) are 9c-equifunctional or not. In other words, we can use the un- 
problematic Ajdukiewicz-automorphism on FF induced by and I;, i.e. 

e, 112 &Et 0;nene 

y2 y’ iff& f =  diSt I; 

f @ “ @ l l c  

to specify the syntactic (9) equifunctionality of Y and Y’ as 

- with 6ztI;af Scope(5;Et)ll: = Scope(5;Ec). And we find - not sur- 
prisingly, since all propositional variables of Lo are 5;“-equifunctional - 
that the scope of 5; forms one single 4 -equivalence (i.e. syntactic equifunc- 
tionality) class: 

Scope (3 I .v = {Scope (5;)}, 
i.e. that allwell-formed9formulae have the same function (or are used in the 
same way) relative to 5;. 

*. 

Bt 

3. Semantic Rules 

With this set-theoretical characterisation of the purely syntactic functions 
of linguistic expressions, we can now turn to certain functions which these ex- 
pressions have over and above the purely syntactic ones, functions which they 
attain in virtue of being used according to what I shall generically refer to as 
semantic mles. 

3.1. Semantic Formation Rules 

Semantic rules are rules which determine the proper way of adding extra 
(“semantic”) features to the syntactic constructs we have so far obtained. 
They accordingly transform our 5;-constructs into a species of what might be 
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called “semantic individuals”. Let us begin our discussion of these rules by 
looking at the system S of (classical) semantic formation rules for our prop- 
ositional L-context which determines the proper way of assigning denotations 
to the propositional variables of Wffs. I shall assume that these denotations are 
truth-values, which shall collectively be given by the set Val = [ F ] .  The 
question is, how exactly are we to represent these “semantically enriched” 
well-formed formulae? 

Given the adopted interpretation of 9as a system governing the formation 
of (syntactically well-formed) tree-structures, the most natural interpretation 
of the envisaged structural enrichment seems to be that of an addition of extra 
(“denotation”) branches by which syntactically well-formed formulae are 
transformed into structurally enriched tree-structures - which I shall refer to 
as semantically well-formed formulae or S formulae - according to the fol- 
lowing rule: 

To transform a $formula @ into a Sformula 0 is to add one (and only 
one) simple truth-value branch - i.e. a branch whose only node is occupied 
by a truth-value - to every node of Q, occupied by a variable in a syntag- 
matically homogeneous manner, that is in such a manner that if p,# E Vur 
OCCUT in S, and v, # are the truth-values of the terminal nodes attached top 
and #, respectively, then p = # entails v = #. 

S is thus conceived as a system of rules for the formation of a certain kind of 
finitely branched, finite tree-structures (based on B IjVal), and it is easy to see 
that only the first two of the following trees of this type 

0 1  0 2  

A /”\ 

are semantically well-formed in this sense.15 These semantically well-fomed 
formulae are closely related to the more traditional interpreted formula, them- 

15 €3, is semantically ill-formed, not only on account of it not being based on a syntactically 
well-formed formula, but also became it contains, on the one hand, a node with more than one 
truth-value assignment, and, on the other, a variable-node with none. €3, is ill-formed because it 
does not satisfy the syntagmatic homogeneity requirement: one and the same denoting symbol 
(namely pl) with a multiple occurtence in the underlying syntagmatic unit (i.e. ‘plh pl’) is as- 
signed different denotations, namely Tin one occurrence, and F in the other. 
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selves given by a well-formed formula (in the traditional sense) and an inter- 
pretation of the denoting symbols of the language in question, which, in the 
case of &, is usually referred to as an assignment a : Var + Val of truth-values 
to the propositional variables. Indeed, one can easily specify semantically 
well-formed formulae in terms of such assignments; for every semantically 
well-formed formula 0 there is a $formula Q, and an assignment a E Z - 
where Z denotes the class of all the truth-value assignments relevant for & - 
such that the tree-structure, say k (a, a), obtained by adding a simple a (p,)- 
branch to every p,-node of Q, is nothing else but 0, i.e. such that 
k (a, a) = 0. Take, for example, the semantically well-formed formula O2 il- 
lustrated above: k (pl v (pl A p ~ ) ,  a), that is 

V 

is clearly the same as 02, provided we choose an assignment with a@) = T 
and a(n) = E We have thus established a functional relationship, say again 
k, between $formulae and truth-value assignments, on the one hand, and S 
formulae, on the other, which is many-one and onto - namely 

many-one k :  Scope(5) X I: onto Scope(4 

- and it is easy to see that the construction employed here (and hence the 
function k) can be extended to the super-set & X Z of Scope (9) XI: .I6 With 
this, we can now give a simple characterisation of an exchange of basic ex- 
pressions, say a and b, not only in semantically well-formed formulae, but in 
any of the products of the extended k-construction - i.e. in any 
XE Fl : = k[& x Z] 3 ScopeQ - namely 

All that needs to be done to avoid possible construction ambiguities is to add the con- 
dition that the a(p)-bran&es are to be added as the first (or, alternatively, the last) of the bran- 
ches of the relevant A-node, just in case we are dealing with a A-node which is not terminal. 
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- with all: : Var + Val given as 

a(u) i fx=b&u,  bE k r ;  
a(b) if x=u&u, b~ Vm; 
a(x) else. 

Strictly speaking, we ought to have made a notational distinction between the 
exchange operation to be defined, and the one given on Fo, say by writing 
XF,ll; and @ F ~ I I $ ,  respectively. However, to keep the notation less cumber- 
some, I shall assume these differences as implicitly understood.17 
Since all:= a, all: = Ullf: and (allQllt= a, it follows that Xllt- as defined 
above - satisfies the general conditions placed on exchange operations.'* 
To exemplify all this, let us look at an exchange of 'pz' with 'n', on the one 
hand, and with 'A' ,  on the other, in the first of the two semantically well- 
formed formulae illustrated above, i.e. in 

/ \  

T F 

Assuming O1 = k (pl A pz ,  al) (i.e. that al(pl) = T and al (pz)  = F) we have 
that 

A 

(plApz)ll: = / \ (Pl Apz>ll',z = /"\ 
P l P 3  Pl A 
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and that 

and consequently we get the following exchange products: 

T F T 

The former of the two clearly is semantically well-formed, while the latter, 
equally clearly, is not: 

0 1  11;; Scope(9 0 1  11: Scope(9 

F’ is an Ajdukiewicz-field for S relative to B, and, given the above examples, 
it will not be surprising that the “semantic” equifunctionality relation = 
for basic &,-expressions - given, according to our general scheme, by 

s 

s 
a = b iff,, Scope(S)IIi = Scopes (with a, bE B) - 

is co-extensional with the syntatic equifunctionality relation, i.e. that 
5 s 

a = b  iff a = b  (for a, b E B). 
To illustrate, however, that this need not to be the case, let us briefly look at 
propositional L-contexts with propositional constants, that is the case where a 
set Const: = {cl,. . .,G} is added to our vocabulary B to form the propositional 
L-context LFmt As far as the syntatic formation rules are concerned, these 
constants are treated on a par yith variables, and thus we will find that 

B 
I*mt{ {l}, { A ,  v, +}, varu Const}. 

The functional differentiation of variables and constants only occurs on the 
level of semantic formation rules, in that of the two, only constants are stipu- 
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lated to have one and the same denotation throughout. The class of assign- 
ments, say I: co"t, for this propositional L-context with constants will thus by 
definition satisfy the condition that for all CE Const, a, IJ' E Zcomt 

a(c) = d(C).19 

This, in turn, entails that 

COnstT = { ci E const: IJ(Ci) = T }  
COnstF = { ci E const: U(Ci) = F }  

- which means that semantic equifunctionality, even though it is unable do 
differentiate logical connectives any further than its syntactic precursor, does 
manage to classlfy constants according to what they denote. 

3.2. Semantic Valuation Rules 
Propositional L-context involve, apart from the system S of semantic for- 

mation rules (concerned with the proper assignment of denotations to pro- 
positional variables) a further kind of semantic rules which I shall refer to as 
valuation rules. 

determines a function 
V : Scope(S) -. Val which is most economically defined by making use of 
the characterisation of semantically well-formed formulae in terms of 
truth-value assignments, i.e. by recursively defining a function 
v:  Scope (9) x Z -, Val - which has one and the same value for all pairs char- 
acterising the same Sformula20 - and stipulating that V (k( @, u )) = v(@,  a). 
The recursive definition in question is, of course, that 
(for @, Y, Y E  Scope (3, P E  Vur and a E Z) 

The system of classical valuation rules of Lo, say 

i) if @ = (p) then v(@, a) = o @) 

Tif V(W, a) = F { Felse 
ii) if@ = 1Y then v(@, a) = 

l9 Note that in the case of propositional L-contexts with constants, assignment functions 
range over Vur u Const. 

ztl k(  @, a )  - k( w, a') * v(@, a) = v( a', a') 
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T i f v ( Y , a )  = Tand v ( Y ’ , a )  = T { Felse iii)if CP = Y AY’then v(@, a) = 

T if v ( Y ,  a) = Tor v ( Y ,  a) = T { F else iv) if @ = Y vY’then v(CP, a) = 

F if v ( Y ,  a) = Tand v(Y’ ,a)  = F { T else v) if@ =Y+Y’thenv(CP,a)= 

The product of v,21 i.e. the valuation function V is, like any function, 
set-theoretically representable as a set of ordered pairs, namely 
a t (  i j )  C Scope (9 X Val, and Vcan accordingly be interpreted as a rule sys- 
tem for transforming Sformulae into a new kind of semantic individuals, 
which might be called ”(classically) valuated semantically well-formed formu- 
lae”, and which, collectively, make up the scope of l( i.e. we can assume that 
Scope (9 = a t (  V) Given the structure of these individuals - i.e. their being 
ordered pairs of sformulae and truth-values - the natural conception of an 
exchange of basic &-expression in such a pair ( 0, v )  E Scope (9 must 
clearly be that 

This can easily be extended to all elements of F2: = F, X Val, and it will not 
be surprising that this super-set F2 of Scope (9 is an Ajdukiewicz-field for v 
relative to B. The “logical” equifunctionality relation - given by 

a Y b i f t i ~ c o p e ( 9 1 1 ;  = Scope(? 

- then imposes the following “logical equifunctionality structure” on our vo- 
cabulary: 

={{1}, {A},{V}Y { -9, V W .  
B12 

d 
This means that = manages to differentiate the logical connectives in pre- 
cisely the same way as the intuit$ve relation of synonymy. And indeed, there 
are strong reasons for adopting = as the set-theoretic correlate to synonymy 

Note, incidentally, that all the logical COMW~~VI=S of Lo are truth-functional relative to 
by which I mean that for any logical connective a there is a function t. : Val” - Val (where 

n= rank of a) such that (for any Ql, . . ., an E Scope (3, a E Z) 
t , (v  Ql, a), . . ., v(%, a)) = v(a(Q1,.  . ., Qn), a): 

Indeed usually there WIU L at most one such t. for any logical connectwe a In our classical 
framework t. is called the truth table of a. 
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(at least for propositional L-contexts with tnrth-functionalconnectives) - as- 
suming the traditional view that the meaning of classical logical connectives is 
given in their truth-tables - for it can be shown that any truth-functional logi- 
cal connectives u and b of a propositional L-context are logically equifunc- 
tional (have the same “logical use”) relative to the relevant valuation rules if 
and only it they have the same truth-table; i.e. that 

I’ 
U b iff t, = Tb. 

Moreover, the fact that one can show for certain syntactically well-formed 
formulae, such as ‘p,  --* pz’, ‘ip, v pz’ and ‘p,  v pz’, 22 that their logical equi- 
functionality - namely 

- corresponds to what I consider to be their intuitive synonymy, gives strong 
support to the view that our logical equifunctionality relation provides a 
general explication for the synonymy in Lo. 

To sum up: given that our analysis in terms of L can easily be extended to 
cover propositional L-contexts in general, we have thus shown that the three 
hierarchically ordered (formation-) rule systems 5, Sand lhwolved in prop- 
ositional L-contexts can set-theoretically be represented in a way which not 
only i) allows us to define three analogously ordered representations of the 
relevant sameness-of-use relations, but also ii) gives us reason to adopt the 
“highest-ranking” of these equifunctionality-relations as set-theoretical expli- 
cation of the synonymy between the linguistic expressions of propositional 
Lcontexts. Can these results be generalised beyond the propositional case? 
The answer is, I believe, yes - at least as far as (first-order) predicate L-con- 
texts 8 f e  concerned. However, this will have to remain a conjecture to be dealt 
with in a later essay. 

To conclude this discussion of semantic rules, let us briefly consider how 
Ajdukiewicz’s own account of synonymy, given in terms of language matrices 
(see 1.2.1.), might fit in with our results. To do this, let me introduce the notion 

22 The examples chosen here allow for a characterisation of their exchange products 
without having to introduce an auxiliary system, namely 

A discussion of the logical equifunctionality of wffs in general is, however, technically more de- 
manding and cannot be given in this introductory essay. 

W I ,  411; - ~l@lll;, a). 
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of an Ajdukiewicz-matrix (based on a vocabulary Band a syntactic rule sys- 
tem s;) by which I mean a sub-set of 

whose elements contain only syntactically well-formed formulae - which, in 
the m e  of M means that a1, . . . , m4 E Scope (3. 

a) Now, M can be interpreted as itself being the scope of a rule system, say 
my which has F3 as its constructive field. This, I believe, is precisely what Ajdu- 
kiewicz had in mind with regard to his discursive language matrices, where ‘D 
is a system of rules for the construction of derivations. Ff is an Ajdukiewicz- 
field for ‘D relative to Band the equifunctionality relation reflects the same- 
ness of use as far as the constructions (i.e. the derivations) guided by are 
concerned. 

b) A second way of interpreting M is to treat it as the “linguistic expres- 
sion” of a system Mof higher order semantic rules - by which I mean a system 
of rules for constructing semantically well-formed formulae of a certain type, 
which collectively make up the scope of That is, we can treat M not as the 
scope of a rule system, but as the “linguistic correlate” to (the scope of) a 
higher-order system, namely to (the scope of) M 2 4  

Which of these interpretations ought to be adopted in order to explicate 
the relevant notion of synonymy? In my view it must be the second one. 
Whether sameness of meaning can indeed be explicated in terms of the Gui- 
functionality relation associated with Mis a question which will have to be 

23 Ajdukiewicz matrices correspond to the sort of matrim Ajdukiewicz would associate 
with what he calls “purely discursive languages”, i.e. languages without “empirical meaning 
rules” in his sense. His distinction between axiomatic and deductive meaning-rules is reflected 
in whether the set off wffs in a given element of F3 is empty or not. 

24 Each element of M can, for example, be associated with a particular class of models (to 
use the terminology of predicate L-contexts) - namely 

({cp,,@z},cp3)-{M:ifMI=@.e(P2thenMI=cP~} 
( 0 , @ 4 ) - +  (M:MI=@.+} 

- and the correlation between M and Mmight be given in the fact that Scope(39 is precisely the 
class of semantically well-formed fonnulae which involve only assignements of denotations oc- 
curring in each and everyone of these classes of models associated with the elements of M. 
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postponed to a future analysis of, say, predicate L-contexts. What seems clear 
from our discussion so-far (say of the equifunctionality of propositional con- 
stants) is that the suggested conception of meaning rules as higher-order se- 
mantical rules will be immune against the sort of objection raised by Tarski, 
and that it will do more justice to the connections between semantic and syn- 
tactic features involved in synonymy than the remedy put forward by Gie- 
dymin and Ernest25 

4. Carnap’s Intensional Isomorphism 

In the first chapter of Meaning and Necessitx Rudolf Carnap develops his 
method of extension and intension ‘‘for the semantical analysis of meaning, 
that is [. . .] for analysing and describing the meaning of linguistic express- 
ions1’26 The importance of Carnap’s work and its similarity in overall aim to 
the work presented here warrants a concluding comparison of the two enter- 
prises, at least as far as such a comparison is possible given the restricted scope 
of t h i s  introductory discussion of the method of equifunctionality 

4.1. Semantical Language Systems 

A Carnapian semantical language system is given by “laying down the fol- 
lowing kinds of rules: (1) rules of formation, determining the admitted forms 
of sentences; (2) rules of designation for the descriptive constants; (3) rules of 
truth [. . .]; (4) rules of ranges [. . By rules of formation Carnap clearly 
means the sort of rules we called syntactic formation rules, but what are the 
other types he mentions? 

The examples of rules for designation which he provides for the particular 
system S, used in his discussion2* are stipulations in which he assigns the 
meaning of an ordinary English expression to the non-logical constants of the 
vocabulary in question, by using a pre-theoretical notion of translation. Thus 
we are given the rules that 

‘s’ is a symbolic translation of ‘Walter Scott’, and 
‘Bx‘ is a symbolic translation of ‘ x  is a biped‘. 

(RDd 

25 see 1.2.2. 
26 Carnap [ 19561, p. iii. 
2’ D. 5. 

8, is a system based on the first-order predicate grammar with lambda and iota-oper- 
atom, individual constants and (finitely many) predicate constants. 
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Based on these designations, the rules of fruth specify what it is for a sentence 
to be true in the semantical language system in question. Carnap gives the fol- 
lowing examp1es:Zg 

The sentence ‘Bs’ is true if and only if Scott is a biped. 
A sentence Qi v Q, is true in & if and only if at least one of the 
two components is true. 
A sentence <pi - Qi is true in SI if and only if either both com- 
ponents are true or both are not true. 

(RTd 
(RT4 

(RT3) 

Finally, the rules of ranges. “A class of sentences in [a semantical language sys- 
tem Sl which contains for every atomic sentence either this sentence or its ne- 
gation, but not both, and no other sentences is called a state-description in [ 4. 
[. . .] state descriptions represent Leibniz’s possible worlds or Wittgenstein’s 
possible states of affairs.”30 Given this, the rules of ranges are taken to be the 
semantical rules which determine whether or not a given sentence holds in a 
given state-description. “That a sentence holds in a state-description means, 
in nontechnical terms, that it would be true if the state-description (that is, all 
sentences belonging to it) were true. A few examples will suffice to show the 
nature of these rules: 

an atomic sentence holds in a given state-description if and 
only if it belongs to it; 
iQi holds in a given state-description if and only if Qi does 
not hold in it; 
Qi v Qj holds in a state-description if and only if Qi holds in 
it or Q, or both; 
Qi * Qj holds in a state-description if and only if either both 
Qi and Qj or neither of them hold in it; [. . .].”31 

[(RRdI 

[(RRdI 

[(RRdI 

t (RW1 

The class of state-descriptions in which a given sentence holds is called the 
range of that sentence (in the language system in question). By determining 
the ranges, the rules of ranges, together with the rules of designation are taken 
by Carnap to give “an interprefution for all sentences in [the system in ques- 
tion], since to know the meaning of a sentence is to know in which of the 
possible cases it would be true and in which not [. . .]”32 That is to say, 

29 see p. 5. 
P.9. 30 

31 ibid. 
32 pp. 9 f. 
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(1) 
mantical rules (the rules of designation and the rules of ranges [. . .])”33 

“the meaning of a sentence, its interpretation, is determined by the se- 

Given these informal characterisations of the meaning of sentences in a 
given semantical language system S, Carnap then proceeds to explicate the 
“familiar but vague concept of logical or necessary or analytic truth [. . .] 1’34 

For this purpose he introduces the technical term of being L-me, for which he 
adopts the following informal general condition - or, as he calls it, 

(2) “Convention. A sentence <Pi is L-tme in a semantical system S if and 
only if <Pi is true in Sin such a way that its truth can be established on the basis 
of the semantical rules of the system S alone, without any reference to (extra- 
linguistic) factsl’35 

And he shows that the formal implementation of the Leibnizian conception 
that a necessary truth must hold in all possible worlds - given in the 

(3) Definition. A sentence <Pi is L-tme(in [a semantical system 4) iffdr <Pi 
holds in every state-description (in [4).”36 

- is in accord with this convention. From this he proceeds to define the 
Lequivalence for certain sentential components - say in the case of his sys- 
tem SI for predicate constants Pi, pi, on the one hand, and individual constants 
ci, q, on the other - by using the additional conventions that 

(Cl) 
(C2) 

‘Pi * 
ci * q’ is short for ‘ci = q’; 

is short for ‘(Vx) (Pix * Pp)’; and 

in the general definition schema 

(Dl) X is L-equivalent to Y(in a system S) iffdf ‘X * Y’ is L-true (in S). 

This formal explication of necessity is then used to define the notion of 
having the same intension: 

33 p. 10. 
34 ibid. 
35 ibid. Note here the link between the meaning of a sentence and a sentence beiig L-true 

which Carnap establishes by refering in both cases to the characteristic of being determined by 
the semantical rules alone. 

36 p. 10. 
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X has the same intension as (is co-intensionalwith) Y(in a system 
S) iffar Xis L-equivalent to Y (in S). 

( W  

Carnap realises that “for the explication of certain customary concepts [such 
as ‘synonymy’] a stronger relation than identity of intension seems to be re- 
quired. [. . .] For example, if we ask for an exact translation of a given state- 
ment, say the exact translation of a scientific hypothesis [. . .] we should 
usually require much more than agreement in the intensions of the sentences, 
that is, L-equivalence of the sentences. [. . .] it will be required that at least 
some of the component designators be L-equivalent, in other words, that the 
intensional structures be alike or at least similarl’37 Accordingly, he introduces 
the relation of intensional isomorphism between sentences, i.e. an isomorph- 
ism with respect to their forms (grammatical structure) and the intensions of 
the corresponding sentential components, and he suggests that “synonymy 
[. . .] is explicated by intensional isomorphism.”38 At this point, it is worth not- 
ing for our comparative purposes that: 
i) Carnap’s explication of synonymy is ”logic-based” in the sense of being 
based on a formal explication of the logical notion of necessity given by his 
conception of Lequivalence; and 
ii) to apply Carnap’s notion of sentences having the same intension, all we 
need are the rules offormation and the rules of ranges of the system in ques- 
tion, while an application of his logically explicated notion of synonymy re- 
quires, in addition, the relevant conventions of the sort exemplified in (Cl) 
and (C2). 

4.2. The Sentential Language System So and the Sentential L-context L G 
Let us now consider a simplified version, say S, of Carnap’s language sys- 

tem S,  and a slightly modified version, say LG, of our propositional L-context 
L,, which are sufficiently similar to one another for a cross-identification of.the 
relevant rule systems. What I have in mind are a system and a context both 
based on the vocabulary with the logical connectives 1, A , v, -. , - , the (de- 
scriptive / denoting) constants c,, c2, c3, . . . and with rules offormation lsyn- 
tactic formation rules given by the appropriate modification, say 5*, of our 
rule system5 The sentences (in Carnap’s sense) of So are thus nothing but the 
well-formed formulae of LG (say Scope (5’)); they are atomic iff they are of 

37 pp. 59 f. 

39 p. 57. 
38 p. 64. 
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the form ( ci). To do justice to Carnap’s views on how this sort of formulae is to 
be interpreted, So must be a language system used to talk about some given 
class of sentences (say Sent) which, as such, constitutes the domain of dis- 
course of the system. This “sentential interpretation” of the descriptive sym- 
bols of So is clearly in conflict with the truth-value interpretation adopted in 
our propositional L-context Lo. Hence the need for a “sentential re-interpre- 
tation” of this context, i.e. the need to re-define the assignements u, a’, u“ in 
b as functions from the denoting symbols, not into the set of truth-values, but 
into this set Sent of sentences. This re-definition, in turn, requires a re-inter- 
pretation (say ”) of the &-system of valuation-rules 2;‘ as a rule system spec- 
lfylng a validity-function 

7Jh : Scope (5*) -, { O,1 } 

on the basis of the class X* of functions 

u* : {atomic 3’-wff} --* { 0,1}.40 

This allows us to idente within L: the components of So required for an ap- 
plication of the Carnapian notion of sentences having the same intension, 
namely: 

a) 

b) 

the formation rules of So are, by stipulation, identical with the syntactic 
formation rules of L:; 
the elements of Z* can be identified with the state-descriptions of So in 
the way in which sets can be identified with set-theoretic characteristic 
functions; 
given this, Carnap’s rules of ranges for propositional constructs, i.e. RRI 
to RR, are nothing but the rules of 7Jh. 

c) 

If we now turn to compare the two explications of synonymy (i.e. to compare 
the LG-equifunctionality-relation = with the Carnapian relation of inten- 
sional isomorphism for So) we will immediately notice that our logical equi- 
functionality relation = differs from the relevant Carnapian relation of inten- 
sional isomorphism: while 

t, 

* 

40 By adopting the sentential interpretation, t‘ceases to be representation of a system of 
valuation-rules. 
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v m’ ‘p1 -+ pz’, 
‘ip1 v pz’ is not intensionally isomorphic with ‘p1 -, pz’,41 

which, I believe, is a point which speaks in favour of the equifunctionality ac- 
count. 

The problems with Carnap’s attempt to explicate synonymy, however, are 
not exhausted by this. In his discussion of intensional isomorphism, Carnap 
states that “[qor [. . .] the comparison of intensional structures, it seems advis- 
able to [. . .] take as designators all those expressions which serve as sentences, 
predicators, functors or individual expressions of any s0rt.”~2 Accordingly he 
must be able to compare logical constants, i.e. he needs some convention of 
the sort given in (Cl) and (C2) for expressions such as ‘ A * v ’, and ‘ A * 1’. 
Intuitively, Carnap seems to adopt the view that two logical constants are co- 
intensional iff 

(*) “any two full sentences of them with the same argument expressions are 
L-equivalent 1’43 

The problem here is that, given the general nature of (Cl) and (C,2), he is re- 
quired to formulate this intuition as a statement in the language under investi- 
gation, something which is clearly far beyond the expressive power of LE. 
Even though it might be possible to alter the format of Carnap’s conventions 
in a way which avoids this impasse - say by admitting formulations of ‘X * Y’ 
in terms of languages richer than the one under investigation - this would still 
not remove what I consider to be a fundamental shortcoming in Carnap’s ac- 
count: the lack of a general method of how to arrive at formulations for 
‘X * Y‘ whatever the type of sentential component which X and Yare refer- 
ring to may be.4 The equifunctionality explication of synonymy, in contrast, 

, 

41 a) The modifications imposed on L to obtain L - apart from the involved enlarge- 
ment of the vocabulary - do not alter the equifunctionality relations we have attributed to wffs 
and vocabulary expressions in the context 4. 

b) ‘ i n  V m’ and ‘PI - m’ &e not of the same grammatical structure, for the one has 
two connectives while the other has only one. 

42 p.57. 
43 bid. 
44 It might be objected that such a method is indeed given by the general requirement that 

‘X - Y‘ is a symbolic translation of ‘Xis co-extensional with Y‘. 
The problem here is that, even though it might be obvious what the extensions of individual 
constants and of predicates are meant to be, it is by no means self-evident how we are to extend 
this concept to other sentential components. 
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ent 45 to the condition of their “truth-table~~~ being equal, a condition which 
we have derived to be the case iff they are logically equifunctional. In other 
words, Carnap’s intuition concerning the co-intensionality of logical con- 
stants is derivable from the notion of synonymy as explicated by the method 
of equifunctionality. 
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45 Provided the constants are “truth-functional” in the sense of 3.2.1. (suitably modified 
for the sententid interpretation of &). 
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