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Summary 

A conception of numerical identity is introduced which, in accordance with a transcenden- 
tal or imposition view of language, treats an identity predicate as having an ontologically gener- 
ative function by genuinely being involved in the generation or construction of its domain of 
discourse. The proposed conception also allows for a plurality of identity predicates, each of 
which generating a domain, and it allows for the possibility that some such domains may not be 
unifiable with each other. All of these informal notions are explicated in formal terms. Finally, a 
comparison to Scott and Fourman’s intuitionistic conception of identity is made. 

1. Introduction 

The work presented here has its origin in a project aiming at developing a 
formal representation of Henri Lauener’s transcendental theory of language. 2 

This theory, which in many respects is close to Ajdukiewicz’s Radical Conven- 
tionalism, was conceived within a methodological framework called ‘open 
transcendentalism’. 4 As such, it embraces what is sometimes called an impo- 
sition view of language, i.e., roughly speaking, the view that language con- 
tributes in an essential way to the structure of reality. The two key tenets of this 
theory are (i) that semantic concepts, such as ‘truth’, ‘falsity’, ‘meaning’, ‘ana- 
lyticity’ etc., must be relativised to what I call language contexts, 5 and (ii) that 

* The work presented here was funded by the Schweizerischer Nationalfonds. 

2 Lauener’s views on the matter have been published in Lauener 1982-1992. 
3 See, in particular, Ajdukiewicz 1934. 

5 A language context, or “context” in Lauener terminology, is given by delineating some 
frame of activity (Handlungszusammenhang) such as the development of a scientific theory. 
The determination of such a frame, as seen by Lauener, involves, amongst other, the choice of a 
language system (including, in particular, the choice of a predicate scheme, and of domains of 
discourse) and the description of the frame’s purpose. It is, of course, unlikely that all these fea- 
tures of Lauenerian contexts, particularly the pragmatic ones, can be usefully represented in a 
formal system. This is why we have decided to focus on the constituents he calls language sys- 
tems. 
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See, in particular, Lauener 1984, 1987, and 1990. 
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the meaning of expressions is determined exclusively by their rule-governed 
use in the particular language context in question. The focus of this paper, 
however, will not be on these two principles,6 but on the semantic and onto- 
logical ‘underpinnings’ of Lauener’s view that a theory of language which is to 
avoid Quine’s well-known conclusions concerning reference, translation and 
analyticity must abandon the idea of a single, all-embracing universe of dis- 
course and rather allow for domains of discourse which can be essentially dis- 
joint, in the sense that they cannot be unified to form a joint domain. My aim 
here will thus be to suggest a conception of domains of discourse (and to de- 
velop an adequate formal, indeed model-theoretical representation thereof) 
which is compatible with Lauener’s views, and accordingly allows for the 
possibility of such essential disjointness. 7 

Classifically, domains of discourse (or, for short, domains) are represented 
as sets or classes of featureless and unstructured objects (‘ur-elements’). Any 
two or more of these classes can always be set-theoretically unified to form a 
joint-class, and, as such, are classically taken to form the representation of a 
joint-domain. 8 The classical conception of a domain underlying this model- 
theoretic representation is therefore clearly incompatible with the idea of es- 
sential disjointness. Does this mean that essentially disjoint domains cannot 
be represented in terms of set-theoretical constructs? To answer this, we must 
look more closely at the way in which domains are represented in classical 
model-theoretic semantics, and, indeed, at the way in which this representa- 
tion is used for semantic purposes. Classically, I said, domains are represented 
as sets of featureless objects. This, however, is not completely accurate, for the 
elements of these sets are actually taken to be what I call individuals, by which 
I mean that they are assumed to be subject to a relation of numerical identity, 
usually expressed by “=”. In classical model theoretic semantics, the rep- 
resentation of a domain is used in two ways: on the one hand it provides the 
range of object-language referents, i.e. the range of objects which the individ- 
ual constants and variables of the object-language can denote or refer to, on 
the other, it serves, as structured totality, to represent the semantics of the (ob- 

6 For a formalisation of (i) and (ii) see Miiller 1995. 
7 To be quite clear, I do not intend to address the question whether or not Quine’s conclu- 

sions can be actually avoided by accepting this conception. This will have to be left for future in- 
vestigation. 

8 It is, of course, possible to introduce many-sorted semantics with distinct classical do- 
mains (See Barwise 1977, p. 42) in which each individual variable is restricted to ranging over 
some particular domain. But the very fact that these domains can always be set-theoretically 
unified to form joint-domains makes these restrictions purely cosmetic in nature: e.g. there is 
nothing in the way in which individuals are classically assigned to variables which might prohibit 
such assignments under certain circumstances (see also section 4.3). 
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ject-language) predicate of numerical identity. In the classical framework we 
thus find an intimate link between domains of discourse and numerical ident- 
ity, and it is this very link which ensures that the classical conception of there 
being a single, universally applicable predicate of numerical identity goes 
hand in hand with the universal unifiability of domains. Indeed, in the classi- 
cal framework, the semantics of numerical identity is based on the more fun- 
damental conception of domains, i.e., to coin a phrase, “classically, identity is 
parasitic on ontology.” 

This, in turn, suggests that it might be possible to achieve a model-the- 
oretic representation of essentially disjoint domains if only one admits a con- 
ception of numerical identity which (i) allows for a plurality of identity predi- 
cates and for a possible essential incompatibility between them, and (ii) inter- 
prets the link between them and domains of discourse as ‘(ontologically) 
generative’ rather than ‘parasitic’. In other words, given the intrinsic connec- 
tion between the classical representation of domains and numerical identity 
within the model-theoretic framework, my suggestion is that a representation 
of essentially disjoint domains in this framework is to be approached (i) by 
generalising the classical semantics of numerical identity predicates, and (ii) 
by considering the possibility that these predicates might be involved in the 
very characterisations (or, indeed, construction) of the domains they are asso- 
ciated with. The generalisation I have in mind is thus informally based on the 
following two ideas: 

(1) the classical formation of elementary identity sentences (i.e. sentences 
of the form “ a  = b”) in terms of a single identity predicate expression 
(“=”) alone can lead to ambiguities, 

and 

(2) 

Take the following classically expressed elementary identity sentences: 

elementary identity sentences can fail to have a truth-value even if 
these ambiguities are removed. 

S1 sz “9 = 7” 
“Eiffel Tower = Tower of London” 

The identity symbol “=” in these sentences is, in my view, used ambiguously, 
in the sense that it must be associated with different predicates in its two oc- 
currences. Why? For the simple reason that there are criteria (‘identifying 
rule$) which can be used, say, to ascertain that S1 expresses a false statement - 
namely criteria involving the spatio-temporal location of the individuals 
referred to in S1 - which cannot be applied to the individuals referred to in the 
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second sentence, because the individuals referred to Sz do not have a spatial 
location. Thus 9 neither occupies the same spatial location as 7 nor is it spa- 
tially separated from 7. The idea here is that if, for two elementary sentences 
“P(al, az, . . ., an)” and ‘‘P(bl, b2, . . ., bn)” (where the referents of all the individ- 
ual constants are well-established), there are criteria by means of which the 
truth or falsity of one can be established, but which are inapplicable in the case 
of the other, then “P” must mean something else in the first sentence than it 
does in the second. 10 

To avoid the ambiguity in S1 and Sz, let us replace “=” with two distinct 
predicate expressions, “=1” and “=z” m the idea being, of course, that 
and “=2” have the same meaning as “=” in S1 and Sz, respectively - and re- 
write the two sentences as 

ST “Eiffel Tower =1 Tower of London” 
s; “9 =2 7” 

Assuming, for the moment that 

(A) 

- an assumption which, although plausible (given the genesis of S; and S;) I 
shall return to shortly - my claim concerning the possibility of truth-valueless 
elementary identity sentences follows for precisely the same reasons. Whereas 
S; and S; are truth-evaluable11 the following sentences are not: 12 

Sl and Sf are indeed elementary identity sentences, i.e. that and 
LL- 3, 

-2 are predicate of numerical identity 

S; 
“9 =1 7” 

S; “Eiffel Tower =2 7” 
S l  “Eiffel Tower =1 7” 

“Eiffel Tower =2 Tower of London” 
s; 

ST “9 =1 9” 

9 And the same can be said of the towers if we were to compare them numerically in 
terms of, say, prime factors. 

10 Note that this includes the possibility that Pis  actually meaningless in the case where 
the criteria are inapplicable. It must be emphasised, however, that by assuming this sort of con- 
nection between the ‘meaning’ of (predicate) expressions and the ‘verification criteria’ of 
(elementary) sentences we do not commit ourselves to a verificationist view of meaning, in par- 
ticular if, as is usual, verificationism is conceived of in terms of empirical verifications alone. 
The present argument simply assumes that there is a certain connection between the two (and it 
would be odd in the extreme, I believe, if there were no such connections at all) which allows us 
to enforce ambiguities, i.e. to conclude that an expression has been used ambiguously. 

l1 Indeed they both express a false statement. 
12 Note that, given (A), all of these sentences must equally be elementary identity sen- 

tences. 
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why? Each of them fails to be truth evaluable because the criteria associated 
with the identity predicate expression employed fail to be applicable to the 
referent of at least one of the occurring proper names. 

Provided this sort of ‘criteria-linked’ semantic argument is acceptable, we 
can conclude that a plurality of identity predicates will always go hand in hand 
with there being truth-valueless elementary identity sentences. And this, in 
turn, suggests a way in which the essential disjointness of domains might be 
reflected in the semantics of numerical identity. Let us say that a collection C 
of objects is an =,,-class (where =,, is an identity predicate of some chosen lan- 
guage-system) if and only if all objects of Care significantly comparable by 
means of =,, (meaning that ‘‘x =,, y” is truth-evaluable for any assignement of 
objects from Cto “Y and “ y”). The idea then is, roughly, that the essential dis- 
jointness of an =.-class A and an =,-class B is semantically reflected in the 
fact that there is some a in A and some bin Bfor which “ a =,b” (or “ a  =,#’) is 
without a truth-value. To be acceptable, this semantic characterisation of es- 
sential disjointness will require some further assumptions concerning the ‘dis- 
tribution’ of truth-value gaps amongst elementary identity sentences (see 
3.3.), but for the moment let us briefly consider its effects on classes associ- 
ated with =1 and =2. Assuming still that these two predicates are identity 
predicates - relative to the (natural) language-system which we implicity 
adopted to provide the meaning of S1 and S2 - the effect is simply that (within 
this language-system) we must distinguish at least two ‘categories’ of objects, 
namely those whose identity can be significantly compared to that of the Eif- 
fel Tower, and those whose identity can be significantly compared to the num- 
ber 9 . 1 3  

Let us turn to the one hypothesis which has thus far been assumed 
throughout, namely that S; . . . SS are identity sentences,14 i.e. that =1 and =2 

are identity predicates. Given the orthodox view, enshrined in the classical 
axiom system for numerical identity and its model-theoretic implementation 
in the so-called standard semantics (for languages with identity), one might 
indeed still reasonably wonder what it could possibly mean to speak of differ- 
ent identity predicates (or, for that matter, of different identity relations)? 
And, of course, this will make no sense at all, if the notion of an “identity 

l3 To avoid misunderstandings, let me point out that it would be wrong to think that be- 
cause the Eiffel Tower and the Tower of London are both towers we must interpret as an 
identity predicate which is somehow applicable only to towers. If anything we could paraphrase 
-, as “is material-object-identical with”, but only insofar as “material object” is used to char- 

acterise the sort of objects which display the features required for an application of the identity- 
criteria associated with 

l4 The reason for dealing with these issues in terms of sentences and not statements is, of 
course, that it makes no sense to speak of statements without truth-values. 

‘‘- 3, 
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predicate” (or “identity relation”) is used as a proper name. Yet, even though 
such a use might be defensible in the classical framework, it is possible to use it 
as a general term, designating all those predicates (relations) which satisfy 
what I call the theory of identity (see section 3.). To put it differently, the fact 
that under the assumptions implicit in the classical semantic framework, there 
is only one predicate (relation) satisfying this theory reflects only on these as- 
sumptions and does not mean that it is conceptually impossible to have more 
than one of these predicates (relations), as implied by the classical use of the 
term as proper name. 

Indeed, another objection which might be raised to the earlier informal 
examples can be rejected in a similar fashion. What I have in mind is the view 
that sentences such as “9 =1 9”, if indeed truth-value less, cannot be an 
elementary identity sentence, because if =1 is a bona fideidentity predicate in 
the above mentioned sense, then by the law of reflexivity of identity, all sen- 
tences of the form “x =1 x” must be true. My reply to this is that the law of re- 
flexivity of identity, as formulated in the classical theory of identity, is really a 
version of a more general law, a version which is tailor-made to suit the spe- 
cific semantic assumptions implicit in the classical framework (such as the fact 
that it does not allow for truth-value gaps). This more general law does admit 
truth-value gaps even for sentences of the form ‘ ‘x =,,x”. 

Yet this reply will clearly only be satisfactory if we can provide a semantic 
framework and a theory of identity which allows for the sort of non-classical 
identity sentences informally introduced earlier on. The aim of sections 2 and 
3 will be to achieve this in formal terms. In the hope that the formal account 
given in these two sections will be acceptable as an account of a generalised 
semantics for identity predicates, I shall then in section 4 turn to a formal rep- 
resentation of the initially mentioned generative character of identity predi- 
cates, and show that, when taken as ontologically generative, identity predi- 
cates do indeed give rise to bona fide essential disjointness. In section 5, fi- 
nally, I shall try to argue for the usefulness of the conception of identity de- 
veloped here by comparing it with the one put forward by Scott and Fourman 
in the context of intuitionistic logic. 
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2. The Atomistic15 Generalised Framework 

Given that the classical (formal semantic) framework 16 for, say, first- 
order l7 predicate languages is a model-theoric one, it seemed sensible to try 
retain this model-theoric character for the envisaged generalised framework 
and meaning that it is to be given by a characterisation of models (section 2.2.) 
c and the specification of semantic valuation rules for syntactically well- 
formed formulae interpreted in these models (section 2.3.). It would not be 
difficult to specify these valuation rules for arbitrary first-order languages, but 
since for our purposes, we really need to consider only what might be called 
‘purely denotational fragments’ of such languages, I decided, for the sake of 
notational simplicity, to restrict the following discussion to languages with the 
syntactic structure of this sort of first-order fragments. 

2.1. The Syntactic Formation Rules 

set B = P u Var of basic expressions (the “vocabulary”) - where 
The syntax of such a purely denotational language (fragment) is given by a 

P =, U E. is referred to as the “predicate scheme”, 

P, = {Pi, E; Pi: . . ., $” } (for i = 1, . . ., m) is the set of i-adic 
predicate constants; and 
Vur = {x, x’,x”, . . .} the set of individual variables 

,= l . . .  m 

- and a single syntactic formation rule, namely that 
fki)  if P E P, then P (xfk”, . . ., xfki)) is a wff, for any xfkl’, . . ., x Vur, 

which defines the set Wff of (syntactically) well-formed formulae (“wffs”). 

2.2. The Atomistic Generalised Conception of Formal Models 

The conception of a formal model in the envisaged generalised framework 
is based on an arbitrarily given set M from the realm of set-theory (whose ele- 

I5 The term “atomistic” is used here to indicate that the characterisation of the relevant 
models will be given (see section 2.2) exclusively in terms of unstructuredindividuals, i.e. that it 
will not refer to any “sub-ontological” features (see section 4.1). 

l6 My use of “framework” here is to introduce a distinction to semantics for particular 
languages. Such a (formal semantic) framework is - as we shall presently see - given by specify- 
ing, on the one hand, the nature of the formal models to be employed, and, on the other, certain 
rules concerning (i) the syntax of the languages to be considered, and (ii) the semantic evalu- 
ation of expressions of these languages. 

The restriction to first-order languages is not crucial to the discussion to follow. 
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ments are referred to as individuals) which is used to define the class ZM of all 
‘formal M-interpretations’ o, by which I mean functions of the following sort: 

0: {?+ + 2~ Y7 x 2 ~ ~ ;  for k =  I, . . ., m 

Any sub-set M of ZM is a model for B (based on M) if it is maximal with re- 
spect to the condition that 

a( P) = o’( P) for all IS, o’ E M and all P e I? 
The interpretations of a predicate constant, say P, within a model M are thus 
all identical, which means that the denotation of Pin M can be represented as 
( PM, non-PM), where, for reasons which will become clear shortly, PM might be 
called the positive component (or “extension”) and non-PM the negative com- 
ponentof the denotation of Pin M, while PM u non-PM could be referred to as 
the significance-range of P in M. Let me refer to the collection of all these 
models (for B, based on M) as Ms (or M, if a particular vocabulary is fixed in 
advance). 

2.3. Semantic Valuation Rules 

In the classical framework, the ‘semantic valuation rules’ are simply the 
rules which specify for each wff a unique truth value for any given model. 
Since the envisaged generalised framework is to admit truth-value gaps, it is 
self-evident that the particular character given to these rules in the classical 
framework must also be generalised. This can be achieved if one assumes that 
semantic valuation rules, in general, define a valuation relation Y between ‘se- 
mantically interpreted wffs’ ( a, M, o ) (with a e Wff and o E M e M) and ‘se- 
mantic values’ S-Val = { T, F, N }  - where T is meant to stand for true, F for 
false, and N for neither true nor false (or ‘non-significant’). 18 

Given the simplicity of the purely denotational languages we are conside- 
ring here, all we need is a single one of these rules, which (for, say PE PI, 
x E Vur, and o E M M) can be formulated as: 

Y( ( P(x) , M, 0 ), T )  iffdf ~ ( x )  E PM 
Y( ( P(x) , M, o), F )  iffdf o(x) e non-PM 
Y( ( P(x) , M, o) ,  N )  iffdf o(x) 4 PMu non-PM 

- where y((p(x),  M, o), T ) ,  y(p(x), M, o>, F ) ,  and y((p(x), M, o),  N )  are 
meant to reflect the fact that “qx)” (under the interpretation o E M) is true, 

l8 Given the formal character of these models, it would perhaps be more appropriate to 
talk of validity instead of truth, but for the present purposes this is not essential. 
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false, or non-significant, respectively. 19 It is clear that the generalised first- 
order framework given by this semantic valuation rule and the type of model 
specified in the preceding section does allow for truth-value gaps. Moreover, 
as no general assumptions concerning the set-theoretic relations between the 
positive and the negative components of predicate denotations have been 
made in section 2.2, this generalised framework also allows for the following 
two (relativised) classifications of predicates: if P E Pi and M E M then 

(i) P is consistent in M iffdf for all o E M, AW, . . . A 4  E Vur 

ii) Pis  complete in M iffdf for all o E M, AW, . . . , d k l )  E Vur 

v((P(,dkl’, . . . Ak), M, o) ,  T)iff not-v((P(x(W,. . . Aki)),M, o), F); 

v((P(AW, . . . A”)), M, o) ,  7) or v((P(Ak1), . . . Aki)), M, a), F) 

2.4. The Classical Framework 

It is easy to see that the framework just introduced is indeed - as suggested 
by our nomenclature - a generalisation of the classical one in the sense that 
for any M, there is a proper sub-class M“ of M - namely the one given by 

M E M“‘ iffdf for all P E Pk and all k : non-PM = Mk\PM 

-which is isomorphic (with respect to semantic valuations) to the set of classi- 
cally conceived models for B based on M. To see this we only need to consider 
the fact that our semantic valuation relation Y, restricted to M“‘, is actually a 
function which conforms to the classical rule that (for all o E M E M“) 

One obvious advantage of this is that it allows us to discuss the classical frame- 
work in terms of Mc! 2o 

3. The Semantics of Numerical Identity 

We can discuss the envisaged generalisation of the classical theory of 
identity, without loss of generality but with a considerable reduction of nota- 
tional complexity, if we restrict the predicate scheme of our purely denota- 

19 Note that the non-significance of “P(x)”  represented by v((P(x),  M, a), N) is not due 
to some referential failure of “i‘, but is meant to reflect the inapplicability of P to  the individual 
referred to by “3 under the relevant interpretation u. 

20 Take, for example, the fact that since all P E P are consistent and complete in all M E 

AtC‘, both consistency and completeness are genuine classifications only in the generalised 
framework, and not in the classical one. 
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tional languages to Monadic and Identity Predicate constants, i.e. by conside- 
ring only vocabularies of the form: 

(MIP) Pi b Id b V U ~  (with Id= {Id,, . . ., Id,,} C P2). 

3.1. The Classical Theory of Identity 

Classically, identity predicates are interpreted to be the set-theoretical 
identity = E  between the elements of the (classical) domain of the (classical) 
model in question. Given our representation of the classical framework in the 
atomistic generalised framework, this means that, if Id$ C Mg is given by 

M E Id iff,, Id: = { (x ,  y) E M X M : x = ~  y }  (for all k) 

then Idl, . . ., Id,, - as interpreted in some M E M 2 - will, in the classical con- 
ception, be identity predicates iff M € Id $, i.e. iff they are interpreted as the 
identity relation. This specification of what it is to be an identity predicate ob- 
viously reflects the classical use of “identity relation” as a proper name. In 
order to explicate the conception of such relations put forward in the intro- 
ductory section, I shall now introduce what might be called the classical (se- 
mantic21) theory of identity. 

The classical theory of identity (for first-order language based on an MIP- 
vocabulary B) is given i) by the following system of Classical Identity Rules, 
which stipulate, for any given classical model M for B, that (for all P E Pl, Idk 
E Id, x,y E Vur, o E M) 

(CIR.l) ~(Zdk (xJ), M, a) = T (Reflexivity); 
(CIR.2) If v(Zdk (x ,  y), M, a) = Tthen v(Zdk(y, x), M, a) = T (Symmetry); 
(CIR.3) If v(Zdk(x, y), M, a) = Tand v(Zdk(y, z), M, a) = T then 

v (Zdk(~ ,  z), M, 0) = T (Transitivity); 
(CIR.4) If v(Zdk(x, y), M, a) = Tand v(P(x), M, a) = Tthen 

V(p(Y), M, a) = (Substitution); 

and ii) the condition that 

(C) for all MIP-vocabularies B (with Id‘ = Id), the classical identity rules 
hold for all B’-models M’ E ME (i.e. based on the same M as M) with the 
same interpretation of Id,, . . ., Id,, as M. 

21 My use of “semantic” here is to introduce a distinction to the axiomatic/deductive 
conception of a theory. 
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It is easy to see that all the models of Id $ satisfy the classical identity rules. 
What is crucial, however, is that this semantic theory manages to identify the 
classical identity predicates - in the sense that 

M satisfies (C) iff M E Id$ 

-without reference to a particular meta-language relation, for only this sort of 
characterisation can be generalised in the way envisaged in the introductory 
section. 

3.2. The Generalised Theory of Identity 

After this discussion of the classical theory of identity, let us now turn to 
the generalisation of the conception of numerical as envisaged at the end of 
the introductory section. Our aim now is thus to find a theory of identity (for 
first-oder languages based on a MIP-vocabulary B) which allows, in particu- 
lar, for truth-valueless elementary identity sentences. The semantic theory (in 
the above sense), which I suggest satisfies this, is given i) by the following sys- 
tem of Generalised Identity Rules,22 which stipulate, for any given atomistic 
generalised model M for B, that (for all P E PI, Idk, Idm E Id, x,y E Vur, o E M) 

(GIR.l) If not-v((Zdk ( x ,  x), M, o), N) and not-v((Zd,(x, x), M, o), N) for 
some x E Vur, o E M, then for all y E Vur, o ’ ~  M: 
not-v((Zddy, Y), M7 a’>, N) iff not-v((Zd,(y, Y), M, 0 ’ > 7  3. 

(GIR.2) If not-v((Zdk(x, y), M, o), N) 
then not-v((Zdk (x ,  x), M, o), N) and not-v((Zdk (y, y), M, o) ,  N). 

(GIR.3) If not-v((Zdk(x, x), M, o), N) 
then V((Zdk, (4  4 7  M7 a>, q (Generalised 

Reflexivity). 

(Generalised 
(GIR.4) If V((Zdk(X, Y),  M7 o>, v) 

then V((Zdk(Y, 4 7  M7 o>7 v) 

- where V stands for any of the three seman- 
tic values considered here. 

then V((Zd(x, z), M7 o>, q 
then v((Pi (Y), M, (7 >, V )  

Symmetry) 

(GIR.5) If V((Zdk(4 Y), M7 o>7 q and V((Zdk(Y, 4 7  M7 o>, q 

(GIR.6) If v((zdk(x, Y), M, o>, q and v((Pi@), M, o>, v) 
(Transitivity). 

( Generalised 
Substitution). 

22 Let me point out that by such an ‘identityrule’ I mean a rule which is part of the specifi- 
cation of what it is for a predicate to be an identity predicate - which should not be confused 
with what I earlier referred to as ‘identifyingrules’ linked with the application of identity predi- 
cates. 
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and ii) the condition that 

(G) for all MIP-vocabularies B’ (with Id‘ = Zd) the generalised identity rules 
hold for all B’-models M’ E Me (i.e. based on the same M as M) with the 
same interpretation of Zdl, . . ., Id, as M. 

The first two of these rules concern the distribution of ‘truth-value gaps’ men- 
tioned in the introductory section. They are motivated by what we called the 
criteria-linked conception of identity predicates. Thus (GIR.l) is meant to re- 
flect the idea that if two sets of criteria are both applicable to some individual, 
then the features required for an application by either set of criteria must be 
related in such a way that the first set will alwaysbe applicable if and only if the 
second one is. The motivation behind the other five rules is, I believe, self-evi- 
dent. 23 The condition (G), finally, is nothing but the appropriate generalisa- 
tion (C) used to characterise the classical theory of identity. 

Given this generalised theory of identity - i.e., to be more precise, the 
‘atomistic generalised semantic theory of identity’ (given that it was formu- 
lated in terms of the atomistic generalised semantic framework) - which, I 
take it, reflects the criteria-linked conception of numerical identity discussed 
in the introductory section, we are now in a position to search for a semantic 
framework for languages with predicates that refer to the sort of relations 
characterised by this theory. 

3.3. The Atomistic Generalised Framework for Languages with Identity 

The classical semantic framework for languages with identity clearly does 
not adequately reflect the conception of identity given in the generalised the- 
ory. But it is not all too difficult to transform (our representation of) this 
classical framework into a model-theoretic system which will at least be able 
to represent the variety of identity predicates allowed for in the generalised 
conception. All we need to do is i) to introduce for every set M used in the 
construction of our atomistic generalised models a function. 

a:Zd- 2M\{0} 

which transforms M into a partitioned set Ma,24 ii) to restrict the semantic 
framework to those atomistic generalised models for B (collectively referred 

23 It is easy to see that every classical model which satisfies the classical theory of identity 
will also satisfy this generalised theory. Indeed, if we restrict the scoge of models to MC‘, then the 
two theories turn out to equivalent, in the sense that any M E M satisfies CIR iff it satisfies 
GIR. 

24 a is thus meant to satisfy the conditions that 
(i) a (Idk) n a (Id,,,) # 0 iff a (Idk) = a( Id,,,) and (ii) M =kGl a (Idk). 
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to as Mg) in which an Idk pertains to all and only the individuals of a( k), 25 and 
iii) to stipulate that (for M E Mg) 

M E IdMa iffdffor all Idk E Zd 
Id = {(x, y) E a ( k )  X a( k) : x = E  y} and non-Id % is a symmetric 
sub-set of a( k) X a( k). 

It is easy to see, not only that this framework generalises the one discussed in 
section 3.1,26 and that all the models of IdM. satisfy the generalised identity 
rules, but also that 

M E IdMa iff M satisfies the condition (G) of the generalised 
theory of identity, 27 

which justifies the conclusion that 

(1) Idl, . . ., Id,, - as interpreted in the models of IdMa - are identity predi- 
cates (in the sense of the generalised theory of identity). 28 

The fact then that 

(2) V((zdk(X, X ) ,  M, a), N )  iff O(X)#  a (I&) (for all Idk E Zd, M E IdMa) 

and that 

(3) any identity predicate can be inconsistent and/or incomplete 
not only demonstrates that there can be truth-valueless elementary identity 
sentences in this framework (3), even if they are of the reflexive form (2), but 
also justifies an interpretation of a as an assignment of domains to the identity 
predicates in question. Accordingly I shall assume that the way to interpret the 
notion of the ‘domain of an identity predicate’ Idk (interpreted in M E IdMa) is 
to specify that domi(zdk) =df a(Zdk).29 Moreover, given that (for any M 

(4) if dorni(Idk) # domi (Id,) then Idk f Id, (i.e. Idk and Id, have differ- 
ent denotations in M), 

IdMa) 
M 

25 In other words: 
M e  Miiffdfa(k)={aE M:(3bE M)((a,b)e I~dklMv(b,a)El~dkL)) 

- IIdkL stands for the significance range Idyu non-Id? of Idk in M. 
26 In the sense that if a(Idk)=M (for all Idk then Id: is a (proper) sub-set of ldMa, 

namely the one given by the condition that non-Id”;$= M X M\Id?. 
27 The assumption is, of course, that this theory be given in terms of Mi (instead of M,,). 
28 The first two generalised identity rules, for example, are satisfied, because Ma is a par- 

titioned set, while (GIR.6) is satisfied because of the fact that (for all a e M e IdMo and all 
Idke Id) V((I&(x,y), M, a), 

29 Note that hence for all M, M‘ E IdMa domi (Idk) = domi. (Idk) 
iff a(X)=e a()’). 
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it will also be clear that the framework put forward here mirrors yet another 
feature of our original conception, in that it allows for a genuine plurality of 
identity predicates, provided that we adopt the principle that (for any M 
E Idma) 

M 

(SYN) if Idk and Id, are synonymous, then Idk f Id,. 

So far so good. The fact, however, that the converse of (4) is not true runs 
counter to the ontologically generative aspect of the identity conception put 
forward in the introductory section, for if a difference in meaning between 
two identity predicates Idhand Idk is actually reflected in their denotations in 
some model M (i.e. if Idk+ Id,), then this should likewise be reflected in the 
domains they generate in this model (i.e. then domL(Idk) f dom~(Zdm)). 
Moreover, if - in keeping with this original conception - we define that (for 
Idk, Idme Id, M E  Idma) 

(CAT) Idk and Id, are of the same category in M iff,, 
for all o E M, X E  Vur 
nOt-V(Zdk(X, X ) ,  M, a), h‘) iff not-v((Zd, ( X ,  X) ,  M, a), N) 

then it follows from ( 2 )  that 

( 5 )  Idk and Id, are of the same category in M iff dOm*,(ldk) = dom*,(Zd,), 

which also runs counter to this ontologically generative aspect: the relation 
given in (CAT) formally represents the fact the criteria associated with the 
identity predicates in question make reference to the same sorts of features; 
this, however, does by no means imply that the criteria themselves (and thus 
the generated domains) need be the same in both cases. Yet none of this 
should be surprising, for even though the framework presented here does, as it 
were, capture a (semantic) aspect of the initially introduced conception of 
identity predicates, it treats the link between these predicates and their do- 
mains in precisely the same fashion as the classical semantics. In the next sec- 
tion, my aim will now be to specify a formal semantic framework which is able 
to reflect both these aspects of our conception. 

4. The Structurally Enriched Generalised Framework 

4.1. The Sub-Ontological Structure of Models 

The models of the generalised framework introduced in section 2 were 
what I called ‘atomistic’ in the sense that their ultimate building blocks were 
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seen as unstructured (object-language) individuals. 30 In order to incorporate 
the ontologically generative nature of object-language identity predicates, I 
shall now enrich the structure of such an atomistic generalised model to 
achieve a representation of a ‘sub-ontological’ or ‘internal’ structure of ob- 
ject-language individuals. The idea is that (object-language) identity predi- 
cates are ontologically creative insofar as they are taken to govern the ‘gener- 
ation’, or ‘construction’ of structured individuals out of certain units which I 
shall refer to as ‘generators’, and that the structure of these individuals reflects 
the basic identifymg acts involved in their construction. 31 To put it differently, 
the conception of the ontologically generative nature of identity predicates 
which I intend to represent here is that identity predicates govern certain basic 
identifymg acts (expressable by elementary identity sentences) which can be 
interpreted as generating, or constructing, complex structured entities out of a 
manifold of generators, entities which subsequently serve as the individuals of 
the object-language in question. 

Given the discussion in the preceding section, it should not be surprising 
that, in order to achieve a formal representation of this conception, I will not 
be looking at yet another version of the atomistic generalised models dis- 
cussed in section 2.2, but rather focus on trying to modify the atomistic build- 
ing blocks of these models. Instead of some class representing a collection of 
object-language individuals, the construction of a model of the structurally 
enriched framework which I am about to introduce is thus based on a set 
(from the realm of set-theory), say C, which is meant to represent such a man- 
ifold of generators. In a first constructive phase, this class is taken to be struc- 
tured by an ‘elementary identifying function’ 

30 This meant, in particular, that the set-theoretical meta-language employed in the 
characterisation of the generalised semantic framework dealt only with individuals of one kind 
(and, of course, with set-theoretical constructs based on them) and thus involved only one 
(meta-language) identity predicate (denoted by =E ). 

31 No identifying act can be performed in the absence of all structure in the ‘manifold of 
reference’, i.e. the manifold on the basis of which the identifying acts are performed. Yet this 
does not mean that the structure required is that of a full-blown identity structure. All that is 
minimally required is that the reference manifold display certain units for the identifying acts to 
‘latch on to’. These units can be individuals (i.e. entities which are already subject to some ident- 
ity relation) or ‘mere’ units. The paradigm of such mere units I have in mind is the kind of units 
we are presented with in sensory experience, i.e. the presentations of the sort of spatially co- 
hesive units inherent in visually apprehended shapes, contours and lines. A more abstract 
example would be the sort of cohesive units introduced into a class by means of an equivalence 
relation (see section 5). (Note, incidentally, that even though such a manifold of equivalence 
units is most naturally transformed into an identity structure by means of the set-theoretical 
identity, this is by no means the only way in which this can be achieved.) 
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(1) *:{- Id+ 2 C X C X 2 C X C  

satisfying the following three conditions: if Id: and non-Id : denote the first 
and the second component of 6(Idk), respectively, and C*[ldk] =df { c E C : 
(c, c) E Id:}, then 

i) Id : C C X C is an equivalence relation on C* [ Idk] , 
ii) non-Id : C C X C is an symmetric relation on C* [ Idk] , 
iii) { C* [ Idk] : k= 1, . . ., n} is a partition of C 

(let me use “C*” to denote the resulting structuredclass). As suggested by the 
nomenclature, Id: and non-Id: are meant to reflect the results of the above- 
mentioned basic &identifying acts, and it is thus easy to see why 6 is meant 
to conform to i) and ii). 3* The third condition is introduced to reflect the ca- 
tegoricity inherent in the suggested informal conception of identity predi- 
cates, and, as such, it forms the semantic counterpart to the first of the above- 
introduced general identity rules. In other words, the partition of C is meant to 
reflect a classification of the generators represented in C according to the sort 
of features required for an application of the identity predicates in question 33 
(accordingly, C*[ Idk] Will be called the categorial signature of Zdk in 0). Be- 
fore turning to the construction of structured individuals, let me use the fol- 
lowing figure to illustrate (for Zd={Zdl, Id,, Id3}) the sort of structures intro- 
duced in this section: 

32 Having said this I must add a note of caution: even though our characterisation of 
structurally enriched models will use Id: and non-Id:as auxiliary structures in constructing Idk- 
individuals, it is these individuals, and not auxiliary constructs, which represent the products of 
the basic identifying acts. 

33 I must point out that this sort of representation is not adequate for identity predicates 
which make reference to a plurality of essential identifying features, but this shortcoming will 
not impinge in an essential way on the explicatory force of the framework to be developped, 
and, moreover, could be overcome by introducing some (partical) order into our representation 
of the structured reference manifold. 
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Figure 1 

Note that, in this case, Idl and Idz have the same categorial signature 
C*[ Idl] = C*[ Idz] = C (distinct from C*[ Id,] = C"), and yet, as we shall pres- 
ently see, they are distinct identity predicates - indeed Idl turns out to be in- 
consistent and incomplete, while Idz is consistent and incomplete. Only Id3 is 
classical in the sense of both being complete and consistent. 

4.2. Structured Individuals 

The type of structured classes (CS) specified in the preceding section 
allows us to construct the envisaged formal representations of structured indi- 
viduals generated by means of identity predicates, which subsequently will 
collectively replace the sets M of atomic individuals used in the atomistic 
characterisation of generalised models given in section 2.2. This is accom- 
plished in two stages. In the first stage we collect, for any given c of the cate- 
gorial signature of the identity predicate we are considering (say Idk), on the 
one hand, all the instances of basic identities with c(graphical1y represented in 
Figure 2 by the C*[ Idk]-elements linked by a line-segment), and, on the other, 
all the instances of basic non-identities with c (represented by means of 
double-arrows). 
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d 

Figure 2 

That is to say, for every c E C* [ Idk] we introduce two further auxiliary set- 
theoretical constructs: 

Id;(c)=df{(u, b)E Id::(u, c)E  Id:or(c, b ) ~  Id:} 
non-Id; (c) =df{ (a, b) E non-Id : : (a, c) E non-Id : or (c, b) E non-Id :} 

In the second stage we then simply unify these two constructs with the rele- 
vant constructs for all the elements of the Id :-equivalence class [ c] k of c (see 
Figure 3), i.e. we form the constructs 

I&( C) =df u Idi ( X ) ,  and nOn-Idk (C) =df u W ( X )  
X E  [‘Ik X E  [‘Ik 

which, when conjoined to form the par ( Idk (c),  non-Idk (c)) ,  represent the 
structured individual arising from the generator (represented by) c through an 
application of Zdk. 34 

34 As it happens Id,(c) = [ c ] ,  X [ c ] ,  and non-Id,(c) = non-Id;X Ek( c) (with 
Edc) = d f ( [ c ] k  X Cs Zdk ) u (C6 [ Idk ]  X [c],)). Yet this characterisation, although useful for 

the initial characterisation. 
certain purposes, is I ]  ess illustrative as concerns the internal structure of these individuals than 
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I 0 
0 

0 non-Id,(c) 
A 

0 
Figure 3 

In section 5.2, I shall discuss in some detail this sort of generation in the con- 
text of generating (Cauchy-) real numbers from the space of (simple) infinite 
sequences of rational numbers as manifold of generators. At this stage it 
might be useful to think of the difference between the atomistic conception of 
individuals and the one introduced here as being analogous to the difference 
between the atomistic and the relational conceptions of points in space. 

4.3. Structurally Enriched Generalised Conception of Formal Models 

Given a particular (representation of a) structured reference manifold C6, 

we thus have, for every c in the relevant categorial signature C6[ Idk] (of an 
identity predicate Idk) 35 a set-theoretic construct, namely (Idk (c), non- 

35 C*[ Idk], we may recall, is meant to represent those generators which display the fea- 
tures required for an application of Id,. 
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Idk (c)), the structure of which is determined by the basic identifymg acts (car- 
ried out by means of Idk) involving c, and which, as such, is taken to represent 
an Idk-indiVidUal. It should thus not be surprising that the domain of discourse 
determined by the rules governing the use of Idk be represented by 

D:=df{(Idk(C), non-Id,(c)): C E  c*[Idk]} 2 c * [ ~ d k l X c * [ l d k ]  X 2C6[ldk]XC*[ldk] 

and that the domains given in the partitioned set Ma used in the atomistic 
characterisation of our generalised formal models (see section 3.3) be re- 
placed by these constructed domains. The characterisation of the structurally 
enriched generalised formal models (based on such a structured reference 
manifold C*) is thus to be given in terms of the class &s of “formal Ca-inter- 
pretations”, which are functions of the following type: 

By itself, there is not much difference between this and the characterisation of 
formal interpretations given in section 2.2. This, however, changes drastically 
if one admits the possibility that, at least in some contexts, the interpretation 
of variables is to be executed by using the generations underlying our con- 
struction, i.e. if we stipulate that (for every e Ecs and every x e Vur) ~ ( x )  
must be specifiable as 

(111) ( J ( X )  =(Idk ( 6 ’ ( X ) ) ,  nOn-Idk(6’(X))), 

for some 6’ constructively equivalent to 6 , 3 6  for this sort of assignment is only 
taken to be well-defined if 6 ’ ( x )  is in the relevant categorial signature of Idk. 
This means that by adopting (111), the proposed enriched semantic framework 
will - in stark contrast to all the semantic frameworks considered thus far - 
necessitate the adoption of a genuinely many-sorted linguistic framework, in 
that we are forced to distinguish between kinds of variables, according to the 
identity predicate they are associated with, which amonts to partitioning Vur 
into disjoint classes Vur[ Id,], . . ., Vur[ Idn] by stipulating that x E k r [  Idk] iffdf 
6(x )  E C*[ z d k ] .  This sort of classification of variables, incidentally, ensures (in 

36 Two functions 6 and 6‘ of the type specified under (I) are said to be constructively 
equivalent (for a given class C) if 6’ l id= 6 lid. Note that two such functions have the same catego- 
rial signatures in C and define the same domains, and that for any individual u of a domain Df 
(specified in terms of 6) and any x E Vurwith 6 ( x )  E C*[Zdk] there is a 6’, constructively equi- 
valent to 6, with u = ~  ( Idk(6‘ (x) ) ,  non-Idk(6’(x))). 
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keeping with the underlying intuition) that the interpretation of any variable is 
confined to one domain, i.e. that o( Vur [ Idk]) C D E: (for every o E Zcs which 
satisfies (11)). 

In keeping with this intuition, I shall assume that “formal C*-interpreta- 
tions” are confined in this manner, not only for variables, but also for predi- 
cates. In other words, I shall assume that Ecs is a class of functions of type (I) 
which is maximal with respect to the following three conditions: 

i) for any x E Vur there is exactly one domain Df s.t. 0 ( x )  E D! for all 
o E Ec6, 

ii) for any P E Pl there is exactly one domain Di s.t. o ( P )  E 2D:xDi for all 
o E &, and 

iii) o ( Idk) E 2.; D6k X 2.; D i  for any Idk E Zd. 

If now, in analogy to section 2.2, a (structurally enriched generalised formal) 
model M for an MIP-vocabulary B (based on C*) is defined to be any sub-set 
of Zcs which is maximal with respect to the condition that 

o(X)=o’(X) for all o, o ’ ~  M and all X E  Pl U Id 

-the totality of such models shall be denoted by Ci (or C*) - then it will not be 
dificult to see that the effect of constraining formal C*-interpretations in this 
manner is simply that i) all these models will have the same domains, ii) a vari- 
able will allways range over one and the same domain, iii) a monadic predi- 
cate will allways pertain to the individuals of one and the same domain, and 
iv) any identity predicate will allways pertain to the individuals which it served 
to construct - which collectively will obviously have to be the domain of the 
identity predicate in question, i.e. 

d ~ r n ~ ( Z d ~ ) = ~ ~ D ~ ( f o r  all M E Ci). 

Within the framework given by this conception of structurally enriched 
models (together with the generalised valuation rules introduced in section 
2.3) we are now in a position to define a formal semantic framework which re- 
flects both the purely semantic and the ontologically generative aspects of 
identity predicates and which provides a formal explication of the sort of es- 
sential disjointness discussed in the introductory section. To do this, we first 
specify for each Idk E Id the denotation (Id?, non-Id ?) in a structurally en- 
riched model M € C * by stipulating that for cl, c2 € C* [ Idk] ( k  = I ,  . . . , n) 
((I&(cI), non-Idk(s)), (Idk(c2), non-Idk(~))> E Id Tff dAc17 c2) E Idk(c1) nIdkjc2) 
((Idkjs), non-Idk(cl)),(Idk( c2), non-Idk( c2))) E non-Idy iffdf 
(q, c2) E non-Idk (q) f l  non-Idk( c2) 
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and by considering only those enriched models which conform to this defini- 
tion37 (which shall be collectively denoted by Idc&). As in the case of our 
atomistic generalised framework (see section 3.3) we will now find, not only 
that 

M E Idc& iff M satisfies the condition (G) of the generalised theory of 
identity, 38 

and thus that 

(1) Id,, . . ., Id, - as interpreted in the models ofldcs - are identity predicates 
(in the sense of the generalised theory of identity), 39 

but also that (for all Idk E Id, M E Idc&) 

(2) v((Zdk(x, x), M, a), N> iff a(x) @ dorni(Zdk); 

(3) identity predicates can be inconsistent and/or incomplete; 4O 

(4) if domi(Zdk) # domi(zd,) then Idk 2 Id,. 

That is to say, our enriched semantic framework reflects the semantic aspects 
of our initial informal conception of (ontologically generative) identity predi- 
cates. Yet it manages to avoid the representational shortcomings of the atom- 
istic generalised framework discussed at the end section 3.3, in that we also 
have that (for all Idk, Id, E Id, M E Idc&) 

( 5 )  Idk = Id, iff domi(Zdk) = domi(Zd,), 
(6) Idk and Id, are of the same category in M iff Ca[ Idk] = Ca[ Id,], 

(7 )  if dom~(Zdk) fl dorni(Zd,) # 0 then C*[Zdk] =Ca[Zd,] (but not the 
converse). 

M 

37 This definition is based on the the following three facts: 
i) (Id:, non-Id2 E 2QhDksX 2 D P X D %  
ii) for every a E DB there is (by construction) a c E C* [Id,] such that a =E (Id, (c), non-Idt (c)) 
(with ''=I " denoting the meta-linguistic set-theoretical identity relation); and 
iii) if (Idt(cl), non-Idt(cl))=E (Idk cz non-Idk(cz)) then 

a) ( cl, c) E Idt (cl) n Idk (c) i(f (kz, c) E Id, ( cz, c) E Idt( cl) n Idt (c); and 
b) (q, c) E non-Idk ( cI)  n non-Idt (c) iff ( cz,c) E non-Idk ( cl) n non-Id, ( c)i 

38 This time, I am referring to a reformulation of this theory in terms of C, 
39 (GIR.6) is again satisfied because of the fact that (for all u E M E Idea, Idk E Id) 

40 This, and indeed our classification of the identity predicates graphically represented in 
v((ldt(x,y), MP), 7) iff u(x) =E ~ ( y )  

Figure 1, follows directly from the fact that for any model M E C* 
Id, is consistent in M iff Id: n non-I@= 0, 
Id, is complete in M iff Id,"" non-Id,"= Ca[ Idt] X C*[ Idk]. 
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As far as an explication of the possibility of essentially disjoint domains is 
concerned, the framework presented here shows that, as long as a unification 
of two domains involves the creation of a joint domain, then any two domains 
generated by identity predicates of different categories will be essentially dis- 
joint (i.e. not unifiable): it is always possible to introduce new identity predi- 
cates (and thus new domains) into our structurally enriched models by 
expanding the relevant elementary identifymg function (6). Such an expan- 
sion is, however, only admissible, if the categorial signatures of the new predi- 
cates respect the categorisation of the old ones. 

5. Non-Significance versus Non-Existence 

Let me recapitulate some of the ideas put forward in this paper by compar- 
ing them with Dana Scott’s point of view as presented in his “Identity and 
Existence in Intuitionistic Logic” [ 19791, which, although similar in some re- 
spects, turns out to be fundamentally different from the one advocated in this 
essay. 

5.1. Scott’s Conception of Identity and Existence 

The very first paragraph in section 1 of Scott’s paper - where he accepts 
that, for constant names “a” and “b”, the sentence “a=b” is either trivially 
true (in case a and b are equal) or trivially false otherwise - should raise the 
suspicion that there are some differences between our views, in light of what 
has been about sentences such as “Eiffel Tower = 7”, which, according to the 
conception of identity put forward here, is neither true nor false. Scott’s main 
aim is to provide a formal logic (i.e. an axiomatic/deductive system) in which 
all complex terms can be used on apar, regardless of whether partial functions 
are involved or not. It is true that, like us, Scott takes expressions of the form 
‘‘Z = (5” - where “‘t” and “a” are (complex) terms like “2’ or “x+ 1” - to be 
inherently ambiguous, but he does this for very different reasons: 

‘Consider an equation like “t = a”. What should it mean? Our point of 
view is purely extensional, so the meaning should depend just on the 
‘values’ of terms ‘t and a and not on how they are defined (or written) 
syntactically. There would seem to be naturally two senses possible: (i) 
both ‘t and a exist and are equal; and (ii) in sor far as one of ‘t and a 
exists, then so does the other and they are equal. We shall take the first 
as the meaning of the simple equation “‘t = a” because we think it is the 
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one more often intended. The second is important, however, and will 
be written ‘‘T = ~.”’41 

To achieve his aim - and to be able to enforce his ambiguity - Scott introduces 
(i) a distinction between ranges for free variables, and ranges for bound ones 
(called “quantifier scopes”), and (ii) an existence predicate “ E,” which he 
links to the notion of identity by adopting the axiom 

(REF) X’SX - Es(x).4* 

The idea (in the case of a one-sorted language) is that 

(i) the quantifier scope is included in the range of free variables, and co-exten- 
sive with the extension of “E,”; and that 
(ii) the (single) =-equivalence class of non-ES (i.e. “non-existent” or “par- 
tial”) elements is to be used as the denotation for all those complex terms, like 
1/0 (= xll o ) ,  which are undefined. 

In order to discuss the correlation advocated in (REF), it is necessary to es- 
tablish what the symbols “E,” and “=,” actually stand for, which means that 
we will have to look at the paradigm used by Scott and Fourman in their con- 
struction of a semantics for Scott’s logic. Before we do this, however, a brief 
remark concerning the logical aspects of the generalised semantic framework 
(see section 2): even though the interpretation of the assignments of semantic 
values specified by the semantic valuation rules (section 2.3) is based on the 
classical interpretation of the standard two-valued “valuation system” (in the 
sense of Dummett 43), according to which each sentence is “assumed to take 
exactly one of these truth-values, independently of our recognition of its 
truth-value”,44 there is, as far as I can see, nothing which would prevent us to 
use the intuitive interpretation of valuation systems under which “the fun- 
damental notion becomes that of a relativised truth-value, that of a formula’s 
being or not being true at a point of [a given] space S, rather than of its having 
one of many absolute truth-values”45 - which lies at the heart of tense, modal 
and intuitionistic logics - as the basis for interpreting our assignments of se- 
mantic values. The point to remember here is that even under this sort of in- 
terpretation, the truth-valuation system would remain a proper sub-system of 
our assignments of semantic values: whereas the former would remain to be 

41 Scott [1979], pp. 664f. 
42 For the sake of notational clarity, I shall add a sub-script ‘‘5”’ to “E” and “=” as used 

43 See Dummett [ 19771, pp. 164f. 
44 Dummett 1977 , p. 165. 
45 Dummett [19771, p. 167. 

by Scott. 



Identity and Ontology 213 

concerned with a formula’s being true or false at a given point, the latter would 
have as its fundamental notion that of a relativised semantic value, that of a 
formula’s being true, false or non-significant at a point of the space in ques- 
tion. Semantic valuation systems, as given by our assignments of semantic 
values, are always extensions of truth valuation systems, regardless of how the 
latter are interpreted. 46 It should hence not be surprising that certain conclu- 
sions which are valid in a framework based solely on truth valuations may turn 
out to be invalid in one based on a semantic-valuation system. Take, for 
example, the fact that while in the intuitionistic framework adopted by Scott47 
the non-truth of “ t  = t” (i.e. the fact that “ t  = t” is assigned an element of the 
relevant complete Heyting algebra other than its top-element) implies the 
non-truth of the statement that t exists, no such inference can be drawn in our 
framework: the fact that the sentence “The Eiffel Tower” =N the Eiffel 
Tower” (where “=”’ designates the identity between natural numbers) is not 
assigned the semantic value T does not entail that the Eiffel Tower does not 
exist, but merely that the sentence in question is non-signification due to a 
“category mistake”. 48 

To “fix ideas”, Scott and Fourman put forward the following “fundamen- 
tal example” of a model for Scott’s logic of partial elements: 

‘The set [. . .] is the collection of continuous [real-valued] maps 
a: U --* R with open domain U C X. We write Ea = U = dom a, and call 
this the extentof u. The set Ea E O(X) [the open sets of x] measures the 
“time” for which a “exists”; we regard a, then, as a variable quantity 
defined over X ,  but we have to agree that for one reason or the other a 
is only partially defined. Sometimes such partial elements can be ex- 
tended to globalelements where a G bwhere Eb =X, but this is not al- 
ways possible. 

46 This means, in particular, that it would be wrong to interpret the semantics specified 
here as a three-valued version of the Scott-Fourman semantics: even though the semantic 
values Tand F do correspond to the top and bottom elements of Scott and Fourman’s complete 
Heyting algebras, Ncannot be identified with any value in between them, without misinterpre- 
ting what it is meant to stand for. The “truth-value gaps” indicated by an assignment of Nare 
not of the sort given by the intermediate values of intuitionistic truth-valuation systems which 
reflect (the degree of) our non-recognition of the truth/falsity of sentences. They rather arise 
from the fact that we allow for the possibility of certain syntactically well-formed closed formu- 
lae to be non-significant, i.e. to be excluded from the realm of formulae which can be judged as 
to their truth of falsity. 

47 See Fourman & Scott [ 19791. 
48 This is not to say that partial elements, in the sense of Scott, could not be incorporated 

in our framework. Were we to base our semantic valuations on the sort of intuitionistic truth- 
valuations (in terms of complete Heyting algebras) adopted by Scott and Fourman, then we 
could well have a situation in which the phrase “ x = ~  x” is neither assigned the top-element of 
the algebra, nor the value N. None the less, Scott’s inference would remain to be invalid. 
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Given a, b E IRxI, we can measure how much they coincide by 
defining: 

The interior operator is applied here because the properties of ele- 
ments we are to be concerned with are local properties; thus, when 
t e  e(a,b), the functions have to coincide in a neighbourhood of the 
point t. By interpreting O(X) as a truth-value algebra, then e(a,b) is the 
truth value of the statement ‘ ‘ ~ = ~ ~ b ” .  Note that Ea= e(a,a). We call 
e( . , . )  the equality m a ~ . ’ ~ 9  

Before we turn to discuss the ideas which are meant to be fixed by this 
example, I must point out that, in quoting Scott, I have chosen to omit certain 
sheaf-theoretical references for the simple reason that they are irrelevant to 
the meaning assigned to “=? (and, implicity, also to “ E?) by this example. 
Having said this, it is plain that even in this revised version of the Scott-Four- 
man example there are still certain stipulations which are equally irrelevant in 
this context, the most obvious of which being the stipulation that the functions 
under consideration are real-valued Indeed, I believe that Scott and Four- 
man’s conception of existence and identity can be captured without reference 
to topological features, which is why I propose to base our discussion on the 
following “ function-paradigm” : 

Let lYXl be the collection of maps a:dom(a) + Y with dom(a) E P(X) - the 
powerset of X - where measures of “existence” and of “coincidence” are 
given by the following two functions: 

e(a, b)= i n t { t ~  Ea fl Ebla(t)= b(t)}. 

E :  lq + P(x); E(a)=df dom(a) 

e:IYXIXIYXI-+ P(X); e(a,b)=df{tE E(a) fl E(b)la(t)=b(t)}. 

The “Scott-Fourman model” based on this function-paradigm will then be 
given by the following additional stipulations: 

(i) 
(ii) 

P(X) is to be used as truth-value algebra. 
E and e are to be used as intuitionistically interpreted truth-valuations 
for elementary E r  expressions and elementary =s-expressions, respec- 
tively. 

These two stipulations, in contrast to the ones we disregarded in formulating 
the function-paradigm, are crucial to the meaning acquired by “ E,” and “=? 

49 Fourman&Scott [1979], pp. 339f. 
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in the context of this paradigm. Take the case of “ E,”: by stipulating that Eis 
to be used as the intuitionistically interpreted truth-valuation for elementary 
“ E,”-expressions, these truth-valuations are meant to be explicated in terms 
of the fundamental notion of being true at some point of the top-element of 
the truth-value algebra in question. Since, in the Scott-Fourman set-up, this 
top-element is nothing but the set X, and since “ Eda)” is true at tiff t E E(a) 
(i.e. iff a exists at t) we can thus conclude that in the Scott-Fourman valuation 

“Eda)” is true iff a exists at every t~ X. 
In other words, in the Scott-Fourman model, the predicate “ E,” acquires the 
conotation (if not the meaning) of “being a totalfunction”, which, given the 
interpretation of E as a measure of (“time of”) existence for IYXI-individuals, 
is not the sort of conception of existence which one would usually adopt in the 
presence of such a measure, namely ex(a) iff E(a) # 0. Indeed, the same co- 
notation is acquired by “=,”: in this case, the conclusion must be that - con- 
trary to the standard convention concerning the use of the equality symbol 
-“=,” does not denote the identity relation on IYx(, for the identity of partial 
functions is given by their being defined at the same “times” and their having 
the same functional value “whenever” they are defined, i.e. by 

Zd(a,b) iff E(a) = E(b) = e(a,b) 

which obviously is not the same as the condition under which “ a  =s b” is true, 
namely iff e( a, b) = X. Of course, if the domain of discourse is restricted to 
total functions, “ E,” and ‘‘=? become materially equivalent with “ ex” and 
“Id”‘, respectively; yet they remain, even so, different in meaning. All this is 
not to say that the semantics put forward by Scott and Fourman fails to be a 
sound and complete formalsemantics with respect to Scott’s formal logic. My 
conclusion is simply that, because the meaning acquired by “ E,” and “=,” in 
the paradigm upon which this formal semantics is based is not that of numeri- 
cal identity and existence, respectively, no conclusions about a relation be- 
tween these two concepts can be drawn from the fact that (REF) is valid in all 
the models of the Scott-Fourman semantics. 

Indeed, this emerges even more if we consider a natural generalisation of 
the function paradigm. Given the one striking similarity between the Scott- 
Fourman model (based on this function paradigm) and the sort of models we 
have been using to explicate our conception of identity - namely that both in- 
volve internally structured individuals - it will not be surprising that the no- 
tion of a coincidence measure, used by Scott and Fourman to fix the meaning 
of “=,”, should allow for a natural generalisation which is applicable to our 
sort of structured individuals, and thus provides the means of a direct com- 
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parison between ‘‘=? and our conception of identity. The generalisation I 
have in mind is based on the fact that there is a natural way of representing a 
(partial) function a: dom(a) -* Y as a (partial) relation in the sense of our 
generalised semantical framework, namely as 

( A  = gr(a), non-A= (dorn(a) X Y) \ gr(a))  

- where gr(a) is the graph of a, i.e. { ( x,y)  
this context, that 

dom(a) X Y: 4 x )  = y} .  Note, in 

( a )  =df I sr( a), (dam( a) x Y) \ gr( a)) 

is a one-one function from IYx I into the class Rel(X,Y) of all consistent (par- 
tial) relations between elements of a class X, and those of a class Y (not 
necessarily different from X) as represented in our generalised semantical 
framework - i.e. the class of all pairs 

(R, non-R) with R, non-R G X X Y and R n non-R = 0. 

Given that the elements of Rel(X,Y) will, in general, not display the sort of 
a-symmetry between their arguments associated with functions, the natural 
way of measuring them seems to be in terms of sub-sets of X X Y (as opposed 
to sub-sets of either X or Y). Accordingly, I suggest that we define 

e’ : Re1 (X, Y) X Rel(X, Y) -+ P(X X Y); 
e*(( (R, non-R), (S, non-S))) =df (R n S) u (non-R n non-S) 

as a measure - not of some “time-span” for which these elements co-incide - 
but as one of their co-incidence in the sense of overlap. 50 In other words, we 
are not measuring a projection of their coincidence, but the coincidence itself. 
The way in which e’ generalises e is that the specification of the identity be- 
tween partial functions in terms of e, i.e. 

(a) a=IYX(biff e(a,a)= e(b,b), e(a,b), 

is reflected in the way in which their relational interpretations are specified in 
terms of e’, namely 

i(u)=Rel(x,y) i(b) iff e’(i(a),i(a)) = e*(i(b),i(b)) = e*(i(u),i(b)), 

and that this is generaZZy true for consistent partial relation, i.e. that for all 
R, SE R(X, Y) 

5n Note that E’: Re1 (X, Y) -. P ( X  X Y); E“((R, non-R)) = R u non-R can analogously 
be used to serve as a measure, not of some “time” for which (R, non-R) exists, but as one of the 
extent to which it is defined. 
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(A) =Rel(X, u) S iff e* ( R, R) = e’ ( S, s) = e’( R, 9.51 

It is not difficult to see, that this “relation-paradigm” can be turned into a 
“ Scott-Fourman model” 

(i) 
(ii) by interpreting e’(R, s) as intuitionistic truth-valuation for 

and that the suggested conception of a coincidence measure for consistent 
partial relations applies directly to the structured individuals of a consistent 
domain, say D: - generated by some identity predicate Idk on the basis of 
some reference manifold C - in virtue of the fact that D: G Rel(C*[Zdk], 
C*[Zdk]). Let M E ldcs (which means that “Id? is interpreted as the identity 
predicate of D:), and M’ the “Scott-Fourman model” based on Rel(C*[Zdk, 
C*[ Idk]) and e*. Given this, we find that for any (J E M 

by using P(X X Y) as a truth-value algebra, and 

‘‘ R zS S”; 

“Idk(x,  y)” is truein M iff o(x)=R~I(x,Y)(J(~) .  

Indeed, if we focus on “classical” (i.e. consistent and complete) domains, it 
becomes clear that 

“Zdk(x, y)” is falsein M iff (~(x) # R ~ ~ ( X , Y ) ( J ( ~ ) ,  

which shows that, in M, “Id;’ does denote the relevant identity relation. In the 
case of M’, however, we find - since for any (J E M‘ 

“x=f is truein M’iff e*(o(x), o(y))=C6[Idk] XC*[Zdk] 

- that for any a(x), o(y) E D: 

“ ~ = ~ f  is true in M* iff card(D:) = 1, 

which, given that we can easily define domains with more than one element, 
can only mean that, as before, =s is not the identity relation of the domain of 
discourse it applies to. 

As a final remark in this section let me point out that there is an interpreta- 
tion of the language used by Scott within our semantic framework which does 
not involve non-existent objects, and which - in contrast to the semantics put 
forward by Scott and Fourman - actually does reflect Scott’s initial motivation 

51 Note that if (a) is accepted to be a special case of (A), then (a) must be taken as the 
characterisation of the identity between partial functions, because (A) is not true by conven- 
tion, but follows from the fact that y) is nothing but the identity on X X Y. 
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that we should be allowed to “feel free to use complex expressions (terms) 
without demanding that they always denote”. 52 The basic idea is simply 

(i) to interpret Scott’s existence predicate not as a monadic predicate 
about individuals, but as a dyadic predicate relating individuals and 
(partial) functions: instead of interpreting “E(4t ) ) ’  as “ 4 t )  exists”, it is 
to be read as “ a  exists at t”, 53 and 
to evaluate all other elementary predicate expressions as being non- 
significant if they contain a complex term “4,)’ which is non-denoting, 
meaning that a does not exist at t. 54 

The “logic of partial functions”, i.e. the logic of the language resulting from 
this interpretation, I believe captures precisely the sort of reasoning which 
Scott had in mind when he developped his logic. Indeed, there are reasons to 
believe that it actually is (possibly a slightly stronger, but none the less non- 
classical version of) his “logic of partial elements”. 55 

(ii) 

5.2. The Construction of Real Numbers 

Scott argues, that the generality which his formal system has over the 
ordinary (first-order intuitionistic) logic is not only interesting but indeed 
necessary “because there is simply no way of avoiding the passage from a 
structure to a substructure. Formally this passage can be expressed by the 
relativisation of the quantifiers to the predicate defining the substructure. [. . .] 
If we wish to reason about the substructure, the more general logic is seen as 
entirely appropriate.” 56 

As a first example of a relativisation of quantifiers, Scott puts forward 
the definition of the real numbers in terms of Cauchy sequences: 

5 2  Scott [ 19791, p. 662. In the Scott-Fourman semantics, all well-formed (closed) terms 
denote, although some reference objects may be non-existing individuals. 

53 This means, of course, that “E( f )”  must be read as a short form of “E [ id(f)]”, where id 
is the identity function id(x) = xon the domain of “f”. Note, incidentally, the resulting depend- 
ence of existence on identity, if the latter is conceived of in the way suggested in this essay. 

54 ad (i) “ E [ a(f)]” is true (false) in M iff E(u) is part of the domain of M which includes f 
and f e E(a) [ f  4 E(a)] - and non-significant otherwise. 
ad(ii) “P[a(f)]”isfrueCfalse)inamodelMiff f e  E(a)anda(f) E P M  [ a ( f )  E non-PM] 
- and non-significant otherwise. 

55 The models - as far as one can judge from the way we have sketched them - are sound 
with respect to Scott’s logic, which means that the logic of the language in question will be at 
least as strong as his one. Its non-classical nature, on the other hand, follows from the fact that if 
“a( f )”  does not denote in a model M, then “P(u( f )”  will be non-significant in M, and hence 
Mb P [ a ( f ) ] v ~  P [ a ( f ) ]  for any predicate ‘‘P - the assumption being that ( N v i  N) f* N. 

56 Scott [ 19791, p. 678. 
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[A]  "We are assuming as known the rationals, Q, with their usual structure. 
Let Q" be the space of (simple) infinite sequences, (~,,),li)~, of rationals; 
that is, we assume enough (intuitionistic) set theory to be able to do a 
completion by sequences. We regard Q" as a perfectly nice set, where 
two sequences are equal if and only if they are termwise equal. [. . .] In 
the well-worn manner we are going to single out a subset of Q", call it 
S, and the Cauchy reals, R', will be a quotient of S by an equivalence re- 
lation. [. . .] 
In fact S is easily defined in terms of the equivalence relation: for 
(xn) and (y,,) define 

x =  y iff / x n - y m l ~  l /n+l/rnfor n, m = l ,  2,3,  ... . 
This is not an equivalence relation on all of Q" but only on the subset 
defined by 

Thus a Cauchey real number (generator) is given by a sequence with 
modulus of convergence l/n. Without much trouble we see that the re- 
lation is symmetric and transitive. [. . .] But to prove that x is a gener- 
ator, we have to prove x E S; the real number ony exists when it is given 
by a convergent sequence. Existence for reals means x E S. [. . .] 

In this example, because an equivalence relation is involved, it is 
perhaps not quite so clear how quantifiers are relativized. The point is, 
of course, that starting out with 'ordinary' logic on Q", to get the theory 
of R' we need to replace = by = . This introduces partial elements, be- 
cause x = x does not hold throughout Q". Even if we relativize to 
S C Q" it does not at once obviate the question, since we can define 
operations under which S may not be closed. [. . .] 
It is more elementary to use elements in such cases instead of classes 
[. . . ]  , but the language of classes [. . .] makes the act of relativization 
particularly simple. Let PQ" be the powerset of Q", a domain on 
which we can use ordinary logic. We define R' G PQ" as the class of 
equivalence classes: 

[. . . ]  we regard all quantifiers such as '3 X as relativised to R' (that is, 
replaced by '3 X E R").,' 57 

x~ Siff x = x. 

R"={XG Q"13 X E  S ' v ' y [ y ~  X -  x = y ] }  

57 Scott [ 19791, pp. 678 f. 
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It is easy to see that Scott's initial specification of Cauchy-reals (given 
under [A]) lends itself to be interpreted as the generation of a domain of 
structured individuals, as represented in the models of our structurally en- 
riched semantics. All we need to do to is: 

(i) to take Scott's set S as a reference manifold (i.e. as a class of "gener- 
ators") to which a certain identity predicate, say Id, is applied, and 

(ii) to interpret = as representing the basic Zd;identifymg acts (see section 
4.1) on S; i.e. define the elementary identifying function 6 for Id, on S 
as follows: 

Id?=,{(x, y)}  E S X S: x = y} and non-Id9=df S X S \Ids, 

The structured reference manifold S' then gives rise to a domain DB corre- 
sponding to the (set of) Cauchy reals in the sense of being isomorphic (as 
identity structure) to Rc, i.e. of there being a set-theoretic mapping 
cp : DB + Rc which is one-one and onto, such that for any structurally enriched 
model M (based on D$ in which "Id," is indeed interpreted as an identity 
predicate - i.e. for any M E Ids& - we have that (for all 0 E M) 

In order to construct the model, say Rc, corresponding to the Cauchy reals 
in our enriched framework, all we would now need to do is to specify the oper- 
ations of addition, subtraction, multiplication, and division for the individuals 
of the domain D! in analogy to the way in which they are introduced in the 
classical definition. 59 It should be noted, that - even though the elements of 
dam$ (Idr) (i.e. of Di) are set-theoretical constructs based on S C Q" - the 
identity relation (given by ( IdR:, non-IdR,") ) of the object-language (say L,) of 
Rc is, as far as LRc is concerned, not reducible to the identity relation between 
the elements of Q" involved in the relevant constructions. The "generators", 
i.e. the members of S C Q", are simply not accessible to LRc. Obviously, this is 
not meant to imply hat one cannot specify denotations for LR=predicate and 
function symbols by referring to the internal components of the elements of 
D: and by using the properties, relations and operations defined for them as 
members of Q", but only that such specifications are, as far as L R C  is con- 
cerned, meta-linguistic in character. 

58 Note that since Id, is classical in all M E Id.+, we also have that (for all a E M) 
V ( ( M ( x ,  Y),  M, 0 ), 4 iff 6 (4 f E O ( Y )  

s9 For example: (Idk ( (xn)) ,  non-Idk ((x.))) +RC(Idk (y,,)), non-Idk ((y"))) =df 
which implies that DFand RC are indeed equivalent set-theoretical sense. 

(Idk ( (x2 ,  + Q Y ~ . ) ) ,  non-Idt ((xz, +QYZ,)) ). 
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Returning to Scott’s example, it seems to be reasonnable to see the passage 
he refers to as “starting out with ‘ordinary’ logic on Q“, to get the theory of 
R“” as embedded in the transition form a particular first-order language in- 
terpreted in Q“, to the (first-order) “counterpart language” interpreted in the 
Cauchy reals. The most basic case of such a transition - within our semantic 
framework - is, of course, that from the “language of Q“-identity” L;- (i.e. 
the first-order language with “Id: as only predicate symbol) interpreted in 
the structurally enriched model Q“ corresponding to Q“, to the “language of 
the identity of Cauchy reals” L z  (with “Id,” as only predicate symbol) inter- 
preted in R“; and it is quite sufficient for the purposes of the present discussion 
to focus on this particular transition. The best, if not the only way of compar- 
ing these two languages is by “embedding” them in a suitably interpreted 
joint-language, that is a (first-order) language L’(with a vocabulary which in- 
cludes the vocabularies of &*- and LTc), interpreted in a structurally enriched 
model 4M* which retains the interpretations of Q “  and R“. What can we say 
about M*? The domains of Q“ and R‘ will somehow have to be embedded in 
the domain(s) of Ma. The way in which this is to be done, however, depends on 
the question whether the Cauchy reals (as represented by dam$ (Id.)) are of 
the same category (in the sense introduced in this essay) as the elements of 
Q“. Given that the identity relation on Q“ is defined by 

a=,b iffdf for every natural number n, 
the n-th component of a the n-th component of b; 

it is not difficult to see that this is not the case: the sentence “r=,S” is non-sig- 
nificant if “I” or “S” refers to a Cauchy-real (regardless, incidentally, of 
whether one takes Cauchy reals to be individuals generated by identifications, 
or = -equivalence classes E PS), for they simply lack the sequential nature re- 
quired to apply the phrase “n-th component of” meaningfully. 

The domains of M* representing those of Q“and R“ will thus have to be es- 
sentially disjoint domains, a fact which requires us to treat the joint-language 
L’as a two-sorted language - one sort associated with Id, and the variables of 
Lhm, the other with Id, and the variables of Llc  - if we wish to avoid an un- 
necessary proliferation of non-significance. The transition from the language 
of Q“-identity to the language of the identity of our Cauchy reals does hence 
not involve a passage from a structure to a sub-structure (formally expressed 
by a Scott-type relativisation of quantifiers), but rather a passage from a 
(sub-) structure of one category to another one of an incompatible category, 
formally expressed by a replacement not only of “Id,” by “Id,”, also by a re- 
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placement of all &--variables by (suitably chosen) L=Fvariables. 6o This, I 
believe, sheds some light on the real reason why "it is perhaps not quite so 
clear how quantifiers are relativised" in the transition from 'ordinary' logic on 
Q" to the theory of R', namely simply that no such relativisation takes place. 
This, of course, is not meant to imply that no relativisation takes place in the 
example put forward by Scott under [B]; the point is rather that we are in this 
case dealing with a transition different from the one occurring in [A], and that 
the link which Scott employs in explicating the putative relativisation in [A] 
by means of the unquestionable relativisation in [B] simply does not exist. 
There is no doubt that there are elements x E Q" for which " x  = x" is not 
true; yet, contrary to Scott's claim, this does notintroduce these elements (i.e. 
the elements of Q" \S) as partial elements, even if we replace the Q"-identity 
predicate by " = " .6l  And even if it did, this would still not warrant Scott's im- 
plicit assumption that in the language of classes, the elements of PQ"\Rc 
correspond to the elements of Q"\S in the way in which those of R' corre- 
spond to those of S: the elements of Q"\S are not only not generators of 
Cauchy-reals as conceived by Scott (i.e. of a certain kindof subsets of Q"\S), 
as far as = is concerned, they simply do not generate any sets at all. This is not 
to say that there might not be situations in which it would indeed be necessary 
to use Scott's logic, but merely that the generation of Cauchy-reals fails to 
exemplify such a situation. 

More importantly, however, our interpretation of the generation of 
Cauchy-reals will have illustrated the fact that incompatible sorts are not con- 
fined to higher-order languages - say, as formalised by Scott,62 where they 
arise through his usage of power sets and product sets as primitives63 - but 
they can occur in any language (with identities). This means, in particular, 
that if, say for logical purposes, we were interested in augmenting our syntax 
with rules that eliminate the possibility of forming non-significant formulae, 

6o In fact, this picture of what the said transformation amounts to will also emerge from 
this analysis if the traditional conception of Cauchy-reds as equivalence classes is used, and the 
joint-language is taken to be the relevant language of construction, i.e. the inherently two sorted 
language of classes. 

61 The fact that " x  = x" is not true would only imply the partial character of xif - were 
the relation of strict identity (in Scott's sense) on the range of the (free) variable "x", and this 
could only be the case if it were co-existensive on what Scott seems to identify as the scope of 
the bound variable "x", namely S, with the ordinary Q"-equality relation. But this, it clearly is 
not, since there are Q"-unequal a, b E S with a = b. 

63 Even though Scott stresses that "as sorts are symbols, equality between sorts means 
notational equality and not identity under semantical interpretation" [ 1979, p. 687 , it is clear 
that, say, in the case of a sort A and its power sort P ( A ) ,  the notational difference re d ects an in- 
compatibility in the sense that the respective semantical interpretations must (apart from poss- 
ibly the empty set) be disjoint. 

See Scott [ 19791, pp. 685ff. 
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we would in general not only have to adopt a sorted language, but a “ca- 
tegory-valued” one. The augmented syntax would not only depend on a sortal 
clasification of the terms and formulae (as represented by Scott’s #-function), 
but also on a category classification of its sorts, representable by a “category 
valuation function” c : Sort --* { 1,2,3, . . .}. It is worth pointing out in this con- 
text that a category-valued (many-sorted) first-order language (as interpreted 
in our structurally enriched semantics) can generally not be reduced to a one- 
sorted language in the way in which this can be achieved in the traditional 
framework: 64 if the language involves sorts, say A and B, of different ca- 
tegories (c(A) # c(B)) then A and B will always be interpreted as essentially 
disjoint sets, which, as such, cannot be construed as sub-sets of a single do- 
main. 
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